Skip to main content

Colloidal Systems and Equilibrium in Such Systems

  • Chapter
  • First Online:
Subsurface Solute Transport Models and Case Histories

Part of the book series: Theory and Applications of Transport in Porous Media ((TATP,volume 25))

  • 1353 Accesses

Abstract

In this chapter, primary factors controlling the stability of colloidal systems and adsorption-related interactions of colloidal particles with dissolves chemical species are considered. Governing equations for sorption equilibrium and kinetics are formulated. A number of case study researches elsewhere illustrating the presence of colloids in groundwater at different locations and their role in the trace element (in particular radionuclides) binding and capture within this environment are examined. All this creates a basis for the further development (Chaps. 26 and 27) of colloid-facilitated transport models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahfir N-D, Wang HQ, Benamar A (2007) Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect. Hydrogeol Journ 15:659–668

    Article  Google Scholar 

  • Allen E, Henshaw J, Smith P (2001) A Review of particle agglomeration. Report number AEAT/R/PSEG/0398. AEA Technology Engineering Services, Inc., Sterling

    Google Scholar 

  • Berctsch PM, Seaman JC (1999) Characterization of complex mineral assemblages: implications for contaminant transport and environmental remediation. Proc Natl Acad Sci USA 96:3350–3357

    Article  Google Scholar 

  • Buddemeier RW, Hunt JR (1988) Transport of colloidal contaminants in groundwater: radionuclide migration at the Nevada Test Site. Appl Geochem 3:535–548

    Article  Google Scholar 

  • Buffle J, Leppard GG (1995) Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environ Sci Technol 29:2169–2175

    Article  Google Scholar 

  • Bunzl K, Flessa H, Kracke W et al (1995) Association of fallout 239 + 240 Pu and 241 Am with soil components in successive layers of a grassland soil. Environ Sci Technol 29:2513–2518

    Article  Google Scholar 

  • Cantrell KJ, Riley RG (2008) Subsurface behavior of plutonium and americium at Non-Hanford Sites and relevance to Hanford. Pacific Northwest National Laboratory, PNNL-17386

    Google Scholar 

  • Choppin GR (1999) Utility of oxidation state analogs in the study of plutonium behavior. Radiochim Acta 85:89–95

    Google Scholar 

  • Clark DL, Janecky DR, Lane LJ (2006) Science-based cleanup of rocky flats. Phys Today 59:34–40

    Article  Google Scholar 

  • Contardi JS, Turner DR, Ahn TM (2001) Modeling colloid transport for performance assessment. J Contam Hydrol 47:323–333

    Article  Google Scholar 

  • Crancon P, Pili E, Charlet L et al (2001) Uranium mobility in soil and groundwater following surface contamination: existence of rapid transport mechanism with still limited bulk migration. In: Abstracts of the 8th international conference on chemistry and migration behaviour of actinides and fission products in the geosphere, MIGRATION’01, Bregennz, p 119

    Google Scholar 

  • Dai M, Kelly JM, Buesseler KO (2002) Sources and migration of plutonium in groundwater at the Savannah river site. Environ Sci Technol 36:3690–3699

    Article  Google Scholar 

  • Dai M, Buesseler KO, Pike SM (2005) Plutonium in groundwater at the 100 K – Area of the U.S. DOE Hanford Site. J Contam Hydrol 76:167–189

    Article  Google Scholar 

  • Degueldre C, Baeyens B, Goerlich W (1989) Colloids in water from a subsurface fracture in granitic rock, Grimsel test site, Switzerland. Geochim Cosmochim Acta 53:603–610

    Article  Google Scholar 

  • Degueldre C, Grauer R, Laube A (1996a) Colloid properties in granitic groundwater systems. II: stability and transport study. Appl Geochem 11:697–710

    Article  Google Scholar 

  • Degueldre C, Pfeiffer HR, Alexander W (1996b) Colloid properties in granitic groundwater systems. I: sampling and characterization. Appl Geochem 11:677–695

    Article  Google Scholar 

  • Delos A, Duro L, Guimera J (2002) Reactive transports modeling of radionuclides along a single fracture in Grimsel (CRR Project). In: TrePro 2002: modeling of coupled transport reaction processes, workshop of the Forschungszentum Karlsrune, 20–21 March 2002, pp 9–13

    Google Scholar 

  • Elimelech M (1992) Predicting collision efficiencies of colloidal particles in porous media. Water Res 26:1–8

    Article  Google Scholar 

  • Fujita T, Sugiyama D, Swanton SW et al (2003) Observation and characterization of colloids derived from leached cement hydrates. J Contam Hydrol 61:3–16

    Article  Google Scholar 

  • Geckeis H, Grambow B, Quinones J et al (1998) Formation and stability of coloids under simulated near field conditions. Radiochim Acta 82:123–128

    Google Scholar 

  • Groffman A, Mejer A (1993) Colloid transport special study. Uranium mill tailings remedial action project. United States department of Energy. Uranium Mill Tailings Remedial Action Project, UMTRA-DOE/AL-400682.0000

    Google Scholar 

  • Grolimund D, Borkovec M (2001a) Release of system-borne colloidal particles natural porous media: phenomena and modeling. In: Abstracts of the 8th international conference on chemistry and migration behaviour of actinides and fission products in the geosphere, MIGRATION’01, Bregennz, p 120

    Google Scholar 

  • Grolimund D, Borkovec M (2001b) Release and transport of colloidal particles in natural porous media: 1 Modeling. Water Resour Res 37:559–570

    Article  Google Scholar 

  • Hakem NL, Allen PG, Sylwester ER (1999) Sorption and diffusion studies of Pu (III) and Pu (IV)–EDTA onto and through Hanford soil. Preprint UCRL-JC-135799

    Google Scholar 

  • Harmand B, Sardin M (1994) Transient transport of colloids in weakly clayey sand. In: Dracos T, Stauffer F (eds) Transport and reactive processes in aquifers. Balkema, Rotterdam, pp 149–154

    Google Scholar 

  • Ibaraki M, Sudicky EA (1995) Colloid-facilitated contaminant transport in discretely fractured porous media. Water Resour Res 31:2945–2960

    Article  Google Scholar 

  • Ivanov IA (2004) Uranium and transuranium elements migration in groundwater at Lake Karachai site. Ph.D. thesis, Ozersk (In Russian)

    Google Scholar 

  • Ivanov IA, Postovalova GA, Drozhko EG (2005) Uranium and transuranium elements migration in groundwater in the vicinity of the Lake Karachai, a surface reservoir for radioactive waste disposal. Probl Radiat Saf 1:23–34 (In Russian)

    Google Scholar 

  • James SC, Chrysikopoulos CV (1999) Transport of polydisperse colloid suspensions in a single fracture. Water Resour Res 35:707–718

    Article  Google Scholar 

  • Kersting AB, Efurd DW, Finnegan DL et al (1999) Migration of plutonium in ground water at the Nevada test site. Nature 397:56–59

    Article  Google Scholar 

  • Kim JI (1986) Chemical behavior of transuranic elements in natural aquatic system. In: Freeman A, Keller C (eds) Handbook on the physics and chemistry of the actinides. Elsevier, New York, pp 413–454

    Google Scholar 

  • Kim JI (1990) Actinide colloid generation in groundwater. Final report for the CEC project MIRAGE II. RCM 01190. Institut für Radiochemie der Technischen Universität München

    Google Scholar 

  • Kim JI, Delakowitz B, Zeh P et al (1994) A column experiment for the study of colloidal radionuclide migration in Gorleben aquifer systems. Radiochim Acta 66(67):165–171

    Google Scholar 

  • Kosakowsky G (2004) Anomalous transport of colloids and solutes in a shear zone. J Cotamin Hydrol 72:23–46

    Article  Google Scholar 

  • Kretzschmar R, Barmettler K, Grolimund D et al (1997) Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour Res 33:1129–1137

    Article  Google Scholar 

  • Kretzschmar R, Borkovec M, Grolimud D (1999) Mobile subsurface colloids and their role in contaminant transport. Adv Agron 66:121–194

    Article  Google Scholar 

  • Krey PW (1976) Remote plutonium contamination from Rocky flats. Health Phys 30:209–214

    Article  Google Scholar 

  • Ledin A, Karlsson S, Duker A et al (1994) Measurements in situ of concentration and size distribution of colloidal matter in deep groundwater by photon correlation spectroscopy. Water Resour Res 28:1539–1545

    Article  Google Scholar 

  • Lehto J, Kelokaski P, Vaaramaa K et al (1999) Soluble and particle-bound 210Po and 210Pb in groundwaters. Radiochim Acta 85:149–155

    Google Scholar 

  • Litaor MI (1995) Spatial analysis of plutonium-239, 240 and americium-241 in soil around Rocky Flats, CO. J Environ Qual 24:506–516

    Article  Google Scholar 

  • Lu N, Triay IR, Cotter CR et al (1998a) Reversibility of sorption of plutonium-239 onto colloids of hematite, goethite, smectite and silica: a milestone final report of YMP. Technical Report LA-UR-98-3057. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  • Lu N, Cotter CR, Kitten HD et al (1998b) Reversibility of sorption of plutonium-239 onto hematite and goethite colloids. Radiochim Acta 83:167–182

    Google Scholar 

  • Lührmann L, Noseck U, Tix C (1998) Model on contaminant transport in porous media in the presence of colloids applied to actinide migration in column experiments. Water Resour Res 34:421–426

    Article  Google Scholar 

  • McCarthy JF, Degueldre C (1993) Sampling and characterizing of colloids and particles in groundwater for studying their role in contaminant transport. In: Buffle J, Van Leeuwen HP (eds) Environmental particles. Lewis Publishers, Boca Raton/Ann Archor/London/Tokyo, pp 247–315

    Google Scholar 

  • McCarthy JF, McKay LD (2004) Colloid transport in the subsurface: past, present and future challenges. Vadoze Zone J 3:326–337

    Google Scholar 

  • McDowell-Boyer LM, Hunt JR, Sitar N (1986) Particle transport through porous media. Water Resour Res 22:1901–1921

    Article  Google Scholar 

  • Meier H, Zimmerhackl E, Zietler G (2003) Modeling of collod-associated radionuclide transport in porous groundwater aquifer at the Gorleben site, Germany. Geochem J 37:325–350

    Article  Google Scholar 

  • Missana T, Mingarro M, Garcia-Gutiérrez M (2001) CRR Project: sorption kinetics of Cs, U, Tc and Se onto granite and fault gouge materials and effects due to the presence of bentonite colloids. In: Abstracts of the 8th international conference on chemistry and migration behaviour of actinides and fission products in the geosphere, MIGRATION’01, Bregennz, p 145

    Google Scholar 

  • Moridis GJ, Hu Q, WuY-S (2001) Preliminary 3-D site-scale studies of radioactive colloid transport in the unsaturated zone at Yucca Mountain, Nevada. LNBL Report LBNL-45876

    Google Scholar 

  • Nagra Bulletin (2002) Vol. 34

    Google Scholar 

  • Novikov AP, Pavlotskaya FI, Goryachenkova TA et al (1998) Radionuclide content in groundwater and rocks from observation wells around Lake Karachai. Radiochemestry 40(5):484–490

    Google Scholar 

  • Novikov AP, Kalmykov SN, Utsunomiya S et al (2006) Colloid transport of Plutonium in the far-field of the Mayak production association, Russia. Science 314:638–641

    Article  Google Scholar 

  • Painter S, Cvetkovic V, Pickett D et al (2002) Significance of kinetics for sorption on inorganic colloids: modeling and data interpretation issues. Environ Sci Technol 36:5369–5375

    Article  Google Scholar 

  • Penrose WR, Polzer WL, Essington EH (1990) Mobility of plutonium and americium through a shallow aquifer in a semiarid region. Environ Sci Technol 24:228–234

    Article  Google Scholar 

  • Reimus PW, Ware SD, Lu N et al (2001) Laboratory experiments to assess the potential for colloid-facilitated plutonium transport in fractured rock. Abstracts of the AGU 2001 Fall Meeting. H41Y-02 0855h

    Google Scholar 

  • Runde W (2000) The chemical interactions of actinides in environment. Los Alamos Sci 26:392–411

    Google Scholar 

  • Saiers JE, Hornberger GM (1996) The role of colloidal kaolinite in the transport of cesium through laboratory sand columns. Water Resour Res 32:33–41

    Article  Google Scholar 

  • Saiers JE, Hornberger GM (1999) The influence of ionic strength on the facilitated transport of cesium by kaolonite colloids. Water Resour Res 35:1713–1727

    Article  Google Scholar 

  • Schäfer T, Bauer A, Hofmann T et al (2000) Reaction front related colloid/particle transport downstream of contaminant plume. In: Rosbjerg et al (eds) Groundwater Research. Balkema, Rotterdam

    Google Scholar 

  • Schäfer T, Artinger R, Bauer A et al (2001) Iron oxide-hydroxide colloid facilitated americium migration in Gorleben groundwater. In: Abstracts of the 8th international conference on chemistry and migration behaviour of actinides and fission products in the geosphere, MIGRATION’01, Bregennz, p 118

    Google Scholar 

  • Schäfer T, Artinger R, Dardenne K et al (2002) Effect of colloidal iron hydroxide transformation on actinide mobility in Gorleben groundwater. In: TrePro 2002: modeling of coupled transport reaction processes. Workshop of the Forschungszentum Karlsrune, 20–21 March 2002,   pp 84–88

    Google Scholar 

  • Tanaka T, Mukai M, Maeda T et al (2003) Migration mechanisms of 237 Np and 241Am through loess media. J Radioanal Nucl Chem 256:205–211

    Article  Google Scholar 

  • Torok J, Buckley LP, Woods BL (1990) The separation of radionuclide migration by solution and particle transport in soil. J Contam Hydrol 6:185–203

    Article  Google Scholar 

  • UZ Colloid Transport Model (2000) Report ANL-NBS-HS-000028, 2000, p 51, Internet resources http://www.ymp.gov/documents/amr/u0070/u0070.pdf

  • Van de Weerd H (2000) Transport of reactive carriers and contaminants in groundwater systems (a dynamic competitive happening). Doctoral thesis, Wageningen University, Wageningen

    Google Scholar 

  • Van de Weerd H, Leijnse A (1997) Assessment of the effect of kinetics on colloid facilitated radionuclide transport in porous media. J Contam Hydrol 26:245–256

    Article  Google Scholar 

  • Van de Weerd H, Leijnse A, van Riemsdijk WH (1998) Transport of reactive colloids and contaminants in groundwater: effect of nonlinear kinetic interactions. J Contam Hydrol 32:313–331

    Article  Google Scholar 

  • Vilks P, Baik M-H (2001) Laboratory migration experiments with radionuclides and natural colloids in a granite fracture. J Contam Hydrol 47:197–210

    Article  Google Scholar 

  • Vilks P, Cramer JJ, Bachinski DB (1993) Studies of colloids and suspended particles, Cigar lake uranium deposit, Saskatchewan, Canada. Appl Geochem 8:605–616

    Article  Google Scholar 

  • Vilks P, Caron F, Haas M (1998) Potential for the formation and migration of colloidal material from a near-surface waste disposal site. Appl Geochem 13:31–42

    Article  Google Scholar 

  • Zänker H, Richter W, Brendler V et al (2000) Colloid-borne uranium and other heavy metals in the water of a mine drainage gallery. Radiochim Acta 88:619–624

    Article  Google Scholar 

  • Zhao P, Steward SA (1997) Literature review of intrinsic actinide colloids related to spent fuel waste package release rates. Lawrence Livermore National Laboratory. UCRL-ID-126039

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav G. Rumynin .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rumynin, V.G. (2011). Colloidal Systems and Equilibrium in Such Systems. In: Subsurface Solute Transport Models and Case Histories. Theory and Applications of Transport in Porous Media, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1306-2_24

Download citation

Publish with us

Policies and ethics