Skip to main content

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 1))

Abstract

Research in the area of legged robotic systems has spanned almost the entire history of modern robotics. IFToMM has played a crucial role in this history by providing a channel of communication between East and West during the cold war period, and via its Technical Committee on Robotics in more recent years. In this chapter we have attempted an overview of what has become a vigorous field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank, A.A.: Automatic control systems for legged locomotion. USCEE Report No. 273, University of Southern California, Los Angeles (1968)

    Google Scholar 

  2. McGhee, R.B., Frank, A.A.: On the stability properties of quadruped creeping gaits. J. Math. Sci 3(3–4), 331–351 (1968)

    MATH  Google Scholar 

  3. Baldwin, W.C., Miller, J.V.: Multi-Legged Walker, Final Report. Space General Corporation, El Monte (1966)

    Google Scholar 

  4. Liston, R.A., Mosher, R.S.: A versatile walking truck. In: Proceedings. 1968 Transportation Engineering Conference. ASME-NYAS, Washington, D.C., (1968)

    Google Scholar 

  5. McGhee, R.B., Orin, D.E.: A mathematical programming approach to control of joint positions and torques in legged locomotion systems. ROMANSY 2, Warsaw (1976)

    Google Scholar 

  6. McGhee, R.B., Iswandhi, C.I.: Adaptive locomotion of a multilegged robot over rough terrain. IEEE Trans. Syst. Man Cyber. 9(4), 176–182 (1979)

    Article  Google Scholar 

  7. Klein, C.A., Olson, K.W., Pugh, D.R.: Use of force and attitude sensors for locomotion of a legged vehicle over irregular terrain. IJRR 2(2), 3–17 (1983)

    Google Scholar 

  8. McGhee, R.B., Orin, D.R., Pugh, D.R., Patterson, M.R.: A hierarchically-structured system for computer control of a hexapod walking machine. In: RoManSy, Hermes, London, pp. 375–381 (1985)

    Google Scholar 

  9. Bessonov, A.P., Umnov, N.V.: The analysis of gaits in six-legged vehicles according to their static stability. RoManSy 1, pp. 1–10, vol. 1. Elsevier, Amsterdam (1973)

    Google Scholar 

  10. Song, S.M., Waldron, K.J.: An analytical approach for gait study and its applications on wave gaits. IJRR 6(2), 60–71 (1987)

    Google Scholar 

  11. Hirose, S., Umetani, Y.: The Basic Motion Regulation System for a Quadruped Walking Machine. ASME Paper 80-DET-34, DETC, Los Angeles, (1980)

    Google Scholar 

  12. Kato, I., Tsuiki, H.: The hydraulically powered biped walking machine with a high carrying capacity. In: IV Symposium on External Control of Human Extremities, Dubrovnik (1972)

    Google Scholar 

  13. Kemp, C.C., Fizpatrick, P., Hirukawa, H., Yokoi, K., Harada, K., Matsumoto, Y.: Humanoids. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotics, pp. 1307–1334. Springer (2008)

    Google Scholar 

  14. Pugh, D.R., Ribble, E.A., Vohnout, V.J., Bihari, T.E., Walliser, T.M., Patterson, M.R., Waldron, K.J.: Technical description of the adaptive suspension vehicle. IJRR 9(2), 24–42 (1990)

    Google Scholar 

  15. Song, S.M., Waldron, K.J.: Machines that Walk: The Adaptive Suspension Vehicle. MIT Press, Cambridge, Mass (1989)

    Google Scholar 

  16. Song, S.M., Waldron, K.J.: Geometric design of a walking machine for optimal mobility. J. Mech. Transm. Autom. Des. 109(1), 21–28 (1987)

    Article  Google Scholar 

  17. Waldron, K.J., Pery, A., McGhee, R.B., Vohnout, V.J.: Configuration design of the adaptive suspension vehicle. IJRR 3(2), 37–48 (1984)

    Google Scholar 

  18. Vukobratovi´c, M., Juriˇci´c, D.: Contribution to the synthesis of biped gait. IEEE Trans. Biomed. Eng. 16(1), 1–6 (1969)

    Article  Google Scholar 

  19. Raibert, M.H.: Legged Robots that Balance. MIT Press, Cambridge (1986)

    Google Scholar 

  20. Raibert, M.H., Brown Jr., H.B.: Experiments in balance with a 2D one-legged hopping machine. ASME J. Dyn. Syst. Meas. Control 106(2), 75–81 (1984)

    Article  Google Scholar 

  21. Raibert, M.H., Brown Jr., H.B., Chepponis, M.: Experiments in balance with a 3D one-legged hopping machine. IJRR 3(2), 75–92 (1984)

    Google Scholar 

  22. Raibert, M.H.: Running with symmetry. IJRR 5(4), 3–19 (1987)

    Google Scholar 

  23. Honda Motors Co., P1-P2-P3 History of Humanoids: [online], Available from: http://world.honda.com/ASIMO/history/p1_p2_p3.html. Accessed 20 Apr 2010

  24. Michel, P., Chestnutt, J., Kuffner, J.J., Kanade T.: Vision-guided humanoid footstep planning for dynamic environments. In: Proceeding IEEE/RAS International Conference, Humanoid Robotics, pp. 13–18 (2005)

    Google Scholar 

  25. Honda Motors Co., ASIMO Frequently Asked Questions: [online], Available from: http://asimo.honda.com/downloads/pdf/asimo-technical-faq.pdf. Accessed 20 Apr 2010

  26. Dickinson, M.H., et al.: How animals move: an integrative view. Science 288(5463), 100–106 (2000)

    Article  Google Scholar 

  27. Kaneko, K., et al.: Humanoid robot HRP-2. ICRA 2, 1083–1090 (2004)

    Google Scholar 

  28. IEEE Spectrum Inside Technology, QRIO: The Robot That Could: http://spectrum.ieee.org/robotics/robotics-software/qrio-the-robot-that-could Accessed 20 Apr 2010

  29. Artificial Intelligence and Robotics, Toyota’s Running Humanoid robot: http://smart-machines.blogspot.com/2009/07/toyotas-running-humanoid-robot.html. Accessed 20 Apr 2010

  30. Honda Motors Co., New Asimo – running at 6 km/h: http://world.honda.com/hdtv/asimo/new-asimo-run-6kmh. Accessed 20 Apr 2010

  31. Fihl, P., Moeslund, T.B.: Classification of gait types based on the duty-factor. In: Proceeding IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 318–323 (2007)

    Google Scholar 

  32. McGeer, T.: Passive dynamic walking. IJRR 9(2), 62–82 (1990)

    Google Scholar 

  33. Collins, S.H., et al.: Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712), 1082–1085 (2005)

    Article  Google Scholar 

  34. Collins, S.H.: A three-dimensional passive-dynamic walking robot with two legs and knees. IJRR 20(7), 607–615 (2001)

    Google Scholar 

  35. Boston Dynamics, BigDog – The Most Advanced Rough-Terrain Robot on Earth: http://www.bostondynamics.com/robot_bigdog.html. Accessed 20 Apr 2010

  36. Bares, J.E., Whittaker, W.L.: Configuration of autonomous walkers for extreme terrain. IJRR 12(6), 535–559 (1993)

    Google Scholar 

  37. Chevallereau, C., et al.: RABBIT: a testbed for advanced control theory. IEEE Control Syst. Mag. 23(5), 57–79 (2003)

    Article  Google Scholar 

  38. Pratt, G. et al.: Stiffness isn’t everything. In: Proceedings of ISER, pp. 253–262 (1995)

    Google Scholar 

  39. Robinson, D.W. et al.: Series Elastic Actuator Development for a Biomimetic Walking Robot. 1999 IEEE/ASME AIM, pp. 561–568, Atlanta (1999)

    Google Scholar 

  40. AnyBots, Inc., About the Robots: http://www.anybots.com/abouttherobots.html. Accessed 20 Apr 2010

  41. Alexander, R.M.: Elastic Mechanisms in Animal Movement, p. 47. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  42. Tucker, V.A.: The energetic cost of moving about. Am. Sci. 63(4), 413–419 (1975)

    Google Scholar 

  43. Seyfarth, A., et al.: Towards bipedal jogging as a natural result of optimizing walking speed for passively compliant three-segmented legs. IJRR 28(2), 257–265 (2009)

    Google Scholar 

  44. Pratt, J., Pratt, G.: Intuitive control of a planar bipedal walking robot. In: ICRA, pp. 2014–2021 (1998)

    Google Scholar 

  45. Alexander, R. M.: Elastic mechanisms in animal movement. Cambridge, p. 37 (1988)

    Google Scholar 

  46. Hyon, S., Mita, T.: development of a biologically inspired hopping robot–Kenken. ICRA, pp. 3984–3991 (2002)

    Google Scholar 

  47. Estremera, J., Waldron, K.: Thrust control, stabilization and energetics of a quadruped running robot. IJRR 27(10), 1135–1151 (2008)

    Google Scholar 

  48. Kim, S., et al.: iSprawl: design and tuning for high-speed autonomous open-loop running. IJRR 25(9), 903–912 (2006)

    Google Scholar 

  49. Csonka, P., Waldron, K.: Static and dynamic maneuvers with a tendon-coupled biped robot. In: Proceeding RoManSy (2010)

    Google Scholar 

  50. Kim, S., Asbeck, A., Provancher, W., Cutkosky, M.: SpinybotII: climbing hard walls with compliant microspines. ICRA 2005, 18–20 (2005)

    Google Scholar 

  51. Kim, S., et al.: Smooth vertical surface climbing with directional adhesion. IEEE Trans. Robot. 24(1), 65–74 (2008)

    Article  Google Scholar 

  52. Honda Motors Co., Walking Assist Device with Bodyweight Support System: http://corporate.honda.com/innovation/walk-assist/. Accessed 20 Apr 2010

  53. Bogue, R.: Exoskeletons and robotic prosthetics: a review of recent developments. Ind. Robot: Int. J. 36(5), 421–427 (2009)

    Article  Google Scholar 

  54. Space.com, Tech Today: Walking Forest Machine: http://www.space.com/techtoday/tech_today_walker.html. Accessed 20 Apr 2010

  55. Boston Dynamics, PETMAN – BigDog gets a Big Brother: http://www.bostondynamics.com/robot_petman.html. Accessed 20 Apr 2010

  56. Marc, Zupan, Ashby, M.F., Fleck, N.A.: Actuator classification and selection – the development of a database. J. Adv. Eng. Mater. 4(12), 933–940 (2002)

    Article  Google Scholar 

  57. Festo Corp, Fluidic Muscle: http://www.festo.com/net/en-us_us/downloads/downloadcache.ashx?lnk=26780/info_501_en.pdf. Accessed 20 Apr 2010

  58. Daerden, F. et al.: Pleated pneumatic artificial muscles: actuators for automation and robotics. In: Proceeding. 2001 IEEE/ASME AIM, pp. 738–743, vol. 2 (2001)

    Google Scholar 

  59. Verrelst, B., et al.: The pneumatic biped “lucy” actuated with pleated pneumatic artificial muscles. Autonom. Robots 18(2), 201–213 (2005)

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the support of the National Science Foundation grant number CMMI-0825364.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Waldron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Csonka, P.J., Waldron, K.J. (2011). A Brief History of Legged Robotics. In: Ceccarelli, M. (eds) Technology Developments: the Role of Mechanism and Machine Science and IFToMM. Mechanisms and Machine Science, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1300-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1300-0_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1299-7

  • Online ISBN: 978-94-007-1300-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics