Skip to main content

Relationships Between Mitochondrial Dynamics and Bioenergetics

  • Chapter
  • First Online:
Mitochondrial Dynamics and Neurodegeneration

Abstract

In this chapter we describe the fundamental mechanisms by which mammalian cells regulate energy production, and we put emphasis on the importance of mitochondrial dynamics for the regulation of bioenergetics. We discuss both the impact of shape changes of the mitochondrion on organellar energy production, and the existence of reverse mechanisms of regulation of mitochondrial fusion and fission by the cellular energy state. Hence, in complement to pioneering concepts of metabolic control which only considered the key controlling steps of energy fluxes at the level of the respiratory chain, the recent study of mitochondrial dynamics highlights new possibilities for OXPHOS control. The implications of such a regulatory loop between mitochondrial dynamics and bioenergetics impacts several fields of human biology, as diverse as embryonic development, energy storage, cell motility, lipid and membrane biogenesis, intracellular trafficking and cell death. In addition, most neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and Hereditary Spastic Paraplegia are associated with defects in mitochondrial dynamics and bioenergetics. Therefore, to unravel the fundamental mechanisms by which mitochondrial form interacts with mitochondrial function could permit to increase our basic knowledge on the regulation of energy metabolism and to decipher the pathophysiology of a group of rare neuronal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

adenosine diphosphate

ANT:

adenine nucleotide translocator

ATP:

adenosine triphosphate

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

COX:

cytochrome c oxidase

CM:

cristae membrane

CoQ:

coenzyme Q

Cyt c:

cytochrome c

DAPI:

diamidino-4′,6-phénylindol-2 dichlorhydrate

Δψ:

mitochondrial membrane electric potential

DNP:

2,4-Dinitrophenol

DRP1:

dynamin-related protein 1

EGFP:

enhanced GFP

EM:

electron microscopy

ETC:

electron transfer chain

FADH2:

flavin adenine dinucleotide reduced form

FCCP:

carbonylcyanide-p-trifluoromethoxyphenylhydrazone

FISH:

fluorescent in situ hybridization

FMN:

flavin mononucleotide

4Pi MICROSCOPE:

confocal microscope with two opposing lenses used for high resolution imaging of fluorescence

FRET:

fluorescence resonance energy transfer

GFP:

green fluorescent protein

GTP:

guanidin triphosphate

H2O2 :

hydrogen peroxyde

IBM:

inner boundary membrane

ICS:

intra cristae space

IM:

inner membrane

IMS:

inter-membrane space

JO2 :

respiratory rate

MCA:

metabolic control analysis

mPTP:

mitochondrial permeability transition pore

mt-NETWORK:

mitochondrial network

NADH:

nicotinamide adenine dinucleotide reduced form

OM:

outer membrane

OPA1:

gene encoding a dynamin-related mitochondrial protein causing autosomal dominant optic atrophy

OXPHOS:

oxidative phosphorylation

PDH:

pyruvate dehydrogenase complex

PLD:

phospholipase D

RCR:

respiratory control ratio

RFP:

red fluorescent protein

ROS:

reactive oxygen species

SDH:

succinate dehydrogenase

STED MICROSCOPY:

stimulated emission depletion microscopy

TMRM:

tetramethyl rhodamine methyl ester

References

  • Aleardi, A. M., Benard, G., Augereau, O., Malgat, M., Talbot, J. C., Mazat, J. P., Letellier, T., Dachary-Prigent, J., Solaini, G. C. & Rossignol, R. (2005) Gradual Alteration of Mitochondrial Structure and Function by beta-Amyloids: Importance of Membrane Viscosity Changes, Energy Deprivation, Reactive Oxygen Species Production, and Cytochrome c Release. J Bioenerg Biomembr, 37, 207–225.

    Article  PubMed  CAS  Google Scholar 

  • Amikura, R., Hanyu, K., Kashikawa, M. & Kobayashi, S. (2001a) Tudor protein is essential for the localization of mitochondrial RNAs in polar granules of Drosophila embryos. Mech Dev, 107, 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Amikura, R., Kashikawa, M., Nakamura, A. & Kobayashi, S. (2001b) Presence of mitochondria-type ribosomes outside mitochondria in germ plasm of Drosophila embryos. Proc Natl Acad Sci U S A, 98, 9133–8.

    Article  PubMed  CAS  Google Scholar 

  • Bach, D., Naon, D., Pich, S., Soriano, F. X., Vega, N., Rieusset, J., Laville, M., Guillet, C., Boirie, Y., Wallberg-Henriksson, H., Manco, M., Calvani, M., Castagneto, M., Palacin, M., Mingrone, G., Zierath, J. R., Vidal, H. & Zorzano, A. (2005) Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes, 54, 2685–93.

    Article  PubMed  CAS  Google Scholar 

  • Bakeeva, L. E., Chentsov YU, S. & Skulachev, V. P. (1978) Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle. Biochim Biophys Acta, 501, 349–69.

    Article  PubMed  CAS  Google Scholar 

  • Baracca, A., Chiaradonna, F., Sgarbi, G., Solaini, G., Alberghina, L. & Lenaz, G. (2010) Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochim Biophys Acta, 1797, 314–23.

    Article  PubMed  CAS  Google Scholar 

  • Benard, G. & Karbowski, M. (2009) Mitochondrial fusion and division: Regulation and role in cell viability. Semin Cell Dev Biol, 20, 365–74.

    Article  PubMed  CAS  Google Scholar 

  • Benard, G. & Rossignol, R. (2008a) Mitochondrial fluidity matters. Focus on “Inherited complex I deficiency is associated with faster protein diffusion in the matrix of moving mitochondria”. Am J Physiol Cell Physiol, 294, C1123.

    Article  PubMed  CAS  Google Scholar 

  • Benard, G. & Rossignol, R. (2008b) Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal, 10, 1313–42.

    Article  PubMed  CAS  Google Scholar 

  • Benard, G., Faustin, B., Passerieux, E., Galinier, A., Rocher, C., Bellance, N., Delage, J. P., Casteilla, L., Letellier, T. & Rossignol, R. (2006) Physiological diversity of mitochondrial oxidative phosphorylation. Am J Physiol Cell Physiol.

    Google Scholar 

  • Benard, G., Bellance, N., James, D., Parrone, P., Fernandez, H., Letellier, T. & Rossignol, R. (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci, 120, 838–48.

    Article  PubMed  CAS  Google Scholar 

  • Benard, G., Bellance, N., Jose, C., Melser, S., Nouette-Gaulain, K. & Rossignol, R. (2010) Multi-site control of cellular and mitochondrial energy production. BBA Bioenergetics Jun-Jul;1797(6–7):698–709.

    Article  PubMed  CAS  Google Scholar 

  • Bereiter-Hahn, J. & Voth, M. (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech, 27, 198–219.

    Article  PubMed  CAS  Google Scholar 

  • Campello, S., Lacalle, R. A., Bettella, M., Manes, S., Scorrano, L. & Viola, A. (2006) Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J Exp Med, 203, 2879–86.

    Article  PubMed  CAS  Google Scholar 

  • Canto, C. & Auwerx, J. (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol, 20, 98–105.

    Article  PubMed  CAS  Google Scholar 

  • Canto, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., Elliott, P. J., Puigserver, P. & Auwerx, J. (2009) AMPK regulates energy expenditure by modulating NAD(+) metabolism and SIRT1 activity. Nature.

    Google Scholar 

  • Chang, C. R. & Blackstone, C. (2007) Drp1 phosphorylation and mitochondrial regulation. EMBO Rep, 8, 1088–9; author reply 1089–90.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H. & Chan, D. C. (2009) Mitochondrial dynamics – fusion, fission, movement, and mitophagy – in neurodegenerative diseases. Hum Mol Genet, 18, R169-76.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W. J. & Douglas, M. G. (1987) Phosphodiester bond cleavage outside mitochondria is required for the completion of protein import into the mitochondrial matrix. Cell, 49, 651–8.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z. X. & Pervaiz, S. (2007) Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells. Cell Death Differ, 14, 1617–27.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z. X. & Pervaiz, S. (2009) Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2. Cell Death Differ.

    Google Scholar 

  • Chen, H., Chomyn, A. & Chan, D. C. (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem, 280, 26185–92.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., Mccaffery, J. M. & Chan, D. C. (2007) Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell, 130, 548–62.

    Article  PubMed  CAS  Google Scholar 

  • Chevrollier, A., Guillet, V., Loiseau, D., Gueguen, N., De Crescenzo, M. A., Verny, C., Ferre, M., Dollfus, H., Odent, S., Milea, D., Goizet, C., Amati-Bonneau, P., Procaccio, V., Bonneau, D. & Reynier, P. (2008) Hereditary optic neuropathies share a common mitochondrial coupling defect. Ann Neurol, 63, 794–8.

    Article  PubMed  Google Scholar 

  • Cho, D. H., Nakamura, T., Fang, J., Cieplak, P., Godzik, A., Gu, Z. & Lipton, S. A. (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science, 324, 102–5.

    Article  PubMed  CAS  Google Scholar 

  • Choi, S. Y., Huang, P., Jenkins, G. M., Chan, D. C., Schiller, J. & Frohman, M. A. (2006) A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol.

    Google Scholar 

  • Collins, T. J., Berridge, M. J., Lipp, P. & Bootman, M. D. (2002) Mitochondria are morphologically and functionally heterogeneous within cells. Embo J, 21, 1616–27.

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta, B. & Milbrandt, J. (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A, 104, 7217–22.

    Article  PubMed  CAS  Google Scholar 

  • De Brito, O. M. & Scorrano, L. (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature, 456, 605–10.

    Article  PubMed  Google Scholar 

  • Detmer, S. A. & Chan, D. C. (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol, 8, 870–9.

    Article  PubMed  CAS  Google Scholar 

  • Duvezin-Caubet, S., Jagasia, R., Wagener, J., Hofmann, S., Trifunovic, A., Hansson, A., Chomyn, A., Bauer, M. F., Attardi, G., Larsson, N. G., Neupert, W. & Reichert, A. S. (2006) Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem, 281, 37972–9.

    Article  PubMed  CAS  Google Scholar 

  • Duvezin-Caubet, S., Koppen, M., Wagener, J., Zick, M., Israel, L., Bernacchia, A., Jagasia, R., Rugarli, E. I., Imhof, A., Neupert, W., Langer, T. & Reichert, A. S. (2007) OPA1 processing reconstituted in yeast depends on the subunit composition of the m-AAA protease in mitochondria. Mol Biol Cell, 18, 3582–90.

    Article  PubMed  CAS  Google Scholar 

  • Ehses, S., Raschke, I., Mancuso, G., Bernacchia, A., Geimer, S., Tondera, D., Martinou, J. C., Westermann, B., Rugarli, E. I. & Langer, T. (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol, 187, 1023–36.

    Article  PubMed  CAS  Google Scholar 

  • Figueroa-Romero, C., Iniguez-Lluhi, J. A., Stadler, J., Chang, C. R., Arnoult, D., Keller, P. J., Hong, Y., Blackstone, C. & Feldman, E. L. (2009) SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. Faseb J, 23, 3917–27.

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara, S., Kawahara, H., Makabe, K. W. & Satoh, N. (1993) A complementary DNA for an ascidian embryonic nuclear antigen Hgv2 encodes a protein closely related to the amphibian histone-binding protein N1. J Biochem, 113, 189–95.

    PubMed  CAS  Google Scholar 

  • Furt, F. & Moreau, P. (2009) Importance of lipid metabolism for intracellular and mitochondrial membrane fusion/fission processes. Int J Biochem Cell Biol, 41, 1828–36.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Roves, P. M., Osler, M. E., Holmstrom, M. H. & Zierath, J. R. (2008) Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J Biol Chem, 283, 35724–34.

    Article  PubMed  CAS  Google Scholar 

  • Griparic, L. & Van Der Bliek, A. M. (2001) The many shapes of mitochondrial membranes. Traffic, 2, 235–44.

    Article  PubMed  CAS  Google Scholar 

  • Guillery, O., Malka, F., Frachon, P., Milea, D., Rojo, M. & Lombes, A. (2008) Modulation of mitochondrial morphology by bioenergetics defects in primary human fibroblasts. Neuromuscul Disord, 18, 319–30.

    Article  PubMed  CAS  Google Scholar 

  • Guillet, V., Gueguen, N., Verny, C., Ferre, M., Homedan, C., Loiseau, D., Procaccio, V., Amati-Bonneau, P., Bonneau, D., Reynier, P. & Chevrollier, A. (2009) Adenine nucleotide translocase is involved in a mitochondrial coupling defect in MFN2-related Charcot-Marie-Tooth type 2A disease. Neurogenetics.

    Google Scholar 

  • Hardie, D. G. (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol, 8, 774–85.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara, N., Jofuku, A., Eura, Y. & Mihara, K. (2003) Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem Biophys Res Commun, 301, 891–8.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara, N., Fujita, Y., Oka, T. & Mihara, K. (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. Embo J, 25, 2966–77.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara, N., Nomura, M., Jofuku, A., Kato, H., Suzuki, S. O., Masuda, K., Otera, H., Nakanishi, Y., Nonaka, I., Goto, Y., Taguchi, N., Morinaga, H., Maeda, M., Takayanagi, R., Yokota, S. & Mihara, K. (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol, 11, 958–66.

    Article  PubMed  CAS  Google Scholar 

  • Jezek, P. & Plecita-Hlavata, L. (2009) Mitochondrial reticulum network dynamics in relation to oxidative stress, redox regulation, and hypoxia. Int J Biochem Cell Biol, 41, 1790–804.

    Article  PubMed  CAS  Google Scholar 

  • Jezek, P., Plecita-Hlavata, L., Smolkova, K. & Rossignol, R. (2009) Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development. Int J Biochem Cell Biol.

    Google Scholar 

  • Jourdain, A. & Martinou, J. C. (2010) Mitochondrial dynamics: quantifying mitochondrial fusion in vitro. BMC Biol, 8, 99.

    Article  PubMed  Google Scholar 

  • Karbowski, M., Norris, K., MM., C., Jeong, S. & Youle, R. J. (2006) Role of BAX and BAK in mitochondrial morphogenesis. Nature, Online publication doi:10.1038/nature05111.

    PubMed  Google Scholar 

  • Karbowski, M., Neutzner, A. & Youle, R. J. (2007) The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol, 178, 71–84.

    Article  PubMed  CAS  Google Scholar 

  • Koopman, W. J., Verkaart, S., Visch, H. J., Van Der Westhuizen, F. H., Murphy, M. P., Van Den Heuvel, L. W., Smeitink, J. A. & Willems, P. H. (2005a) Inhibition of complex I of the electron transport chain causes O2-. -mediated mitochondrial outgrowth. Am J Physiol Cell Physiol, 288, C1440-50.

    Article  PubMed  CAS  Google Scholar 

  • Koopman, W. J., Visch, H. J., Verkaart, S., Van Den Heuvel, L. W., Smeitink, J. A. & Willems, P. H. (2005b) Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency. Am J Physiol Cell Physiol, 289, C881-90.

    Article  PubMed  CAS  Google Scholar 

  • Koopman, W. J., Verkaart, S., Van Emst-De Vries, S. E., Grefte, S., Smeitink, J. A. & Willems, P. H. (2006a) Simultaneous quantification of oxidative stress and cell spreading using 5-(and-6)-chloromethyl-2′,7′-dichlorofluorescein. Cytometry A, 69, 1184–92.

    PubMed  Google Scholar 

  • Koopman, W. J., Visch, H. J., Smeitink, J. A. & Willems, P. H. (2006b) Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts. Cytometry A, 69, 1–12.

    PubMed  Google Scholar 

  • Koopman, W. J., Hink, M. A., Verkaart, S., Visch, H. J., Smeitink, J. A. & Willems, P. H. (2007) Partial complex I inhibition decreases mitochondrial motility and increases matrix protein diffusion as revealed by fluorescence correlation spectroscopy. Biochim Biophys Acta, 1767, 940–7.

    Article  PubMed  CAS  Google Scholar 

  • Koopman, W. J., Distelmaier, F., Hink, M. A., Verkaart, S., Wijers, M., Fransen, J., Smeitink, J. A. & Willems, P. H. (2008) Inherited complex I deficiency is associated with faster protein diffusion in the matrix of moving mitochondria. Am J Physiol Cell Physiol, 294, C1124–32.

    Article  PubMed  CAS  Google Scholar 

  • Korzeniewski, B. (2000) Regulation of ATP supply in mammalian skeletal muscle during resting state – intensive work transition. Biophys Chem, 83, 19–34.

    Article  PubMed  CAS  Google Scholar 

  • Korzeniewski, B. & Mazat, J. (1996) Theoretical studies on control of oxidative phosphorylation in muscle mitochondria at different energy demands and oxygen concentrations. Acta Biotheoretica, 44, 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Koutsopoulos, O. S., Laine, D., Osellame, L., Chudakov, D. M., Parton, R. G., Frazier, A. E. & Ryan, M. T. (2010) Human Miltons associate with mitochondria and induce microtubule-dependent remodeling of mitochondrial networks. Biochim Biophys Acta, 1803, 564–74.

    Article  PubMed  CAS  Google Scholar 

  • Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., Green, D. R. & Newmeyer, D. D. (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell, 111, 331–42.

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov, A. V., Hermann, M., Saks, V., Hengster, P. & Margreiter, R. (2009) The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol, 41, 1928–39.

    Article  PubMed  CAS  Google Scholar 

  • Lacombe, M. L., Milon, L., Munier, A., Mehus, J. G. & Lambeth, D. O. (2000) The human Nm23/nucleoside diphosphate kinases. J Bioenerg Biomembr, 32, 247–58.

    Article  PubMed  CAS  Google Scholar 

  • Legros, F., Lombes, A., Frachon, P. & Rojo, M. (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell, 13, 4343–54.

    Article  PubMed  CAS  Google Scholar 

  • Margineantu, D., Cox, W., Sundell, L., Sherwood, S., Beechen, J. & Capaldi, R. (2002) Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines. Mitochondrion, 1, 397–478.

    Article  Google Scholar 

  • Milon, L., Meyer, P., Chiadmi, M., Munier, A., Johansson, M., Karlsson, A., Lascu, I., Capeau, J., Janin, J. & Lacombe, M. L. (2000) The human nm23-H4 gene product is a mitochondrial nucleoside diphosphate kinase. J Biol Chem, 275, 14264–72.

    Article  PubMed  CAS  Google Scholar 

  • Mironov, S. L. (2007) ADP regulates movements of mitochondria in neurons. Biophys J, 92, 2944–52.

    Article  PubMed  CAS  Google Scholar 

  • Mironov, S. L. & Symonchuk, N. (2006) ER vesicles and mitochondria move and communicate at synapses. J Cell Sci, 119, 4926–34.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 191, 144–148.

    Article  PubMed  CAS  Google Scholar 

  • Nakada, K., Inoue, K., Ono, T., Isobe, K., Ogura, A., Goto, Y. I., Nonaka, I. & Hayashi, J. I. (2001) Inter-mitochondrial complementation: Mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat Med, 7, 934–40.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, N., Kimura, Y., Tokuda, M., Honda, S. & Hirose, S. (2006) MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep, 7, 1019–22.

    Article  PubMed  CAS  Google Scholar 

  • Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol, 183, 795–803.

    Article  PubMed  CAS  Google Scholar 

  • Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. (2009) Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy, 5, 706–8.

    Article  PubMed  CAS  Google Scholar 

  • Newmeyer, D. D. & Ferguson-Miller, S. (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell, 112, 481–90.

    Article  PubMed  CAS  Google Scholar 

  • Olichon, A., Baricault, L., Gas, N., Guillou, E., Valette, A., Belenguer, P. & Lenaers, G. (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem, 278, 7743–6.

    Article  PubMed  CAS  Google Scholar 

  • Palmieri, F., Bisaccia, F., Capobianco, L., Dolce, V., Fiermonte, G., Iacobazzi, V., Indiveri, C. & Palmieri, L. (1996) Mitochondrial metabolite transporters. Biochim Biophys Acta, 1275, 127–32.

    Article  PubMed  Google Scholar 

  • Partikian, A., Olveczky, B., Swaminathan, R., Li, Y. & Verkman, A. S. (1998) Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J Cell Biol, 140, 821–9.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, K., Gohil, V., Stuart, R. A., Hunte, C., Brandt, U., Greenberg, M. L. & Schagger, H. (2003) Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem, 278, 52873–80.

    Article  PubMed  CAS  Google Scholar 

  • Pham, N. A., Richardson, T., Cameron, J., Chue, B. & Robinson, B. H. (2004) Altered mitochondrial structure and motion dynamics in living cells with energy metabolism defects revealed by real time microscope imaging. Microsc Microanal, 10, 247–60.

    Article  PubMed  CAS  Google Scholar 

  • Rossignol, R. & Karbowski, M. (2009) Editorial of the directed issue on mitochondrial dynamics in biology and medicine. Int J Biochem Cell Biol, 41, 1748–9.

    Article  PubMed  CAS  Google Scholar 

  • Rossignol, R., Malgat, M., Mazat, J.-P. & Letellier, T. (1999) Threshold Effect and Tissue Specificity. J of Biological Chemistry, 274, 33426–33432.

    Article  CAS  Google Scholar 

  • Rossignol, R., Letellier, T., Malgat, M., Rocher, C. & Mazat, J. P. (2000) Tissular variation in the control of oxidative phosphorylations, implication for mitochondrial diseases. Biochemical Journal, 347, 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Rossignol, R., Faustin, B., Rocher, C., Malgat, M., Mazat, J. P. & Letellier, T. (2003) Mitochondrial threshold effects. Biochem J, 370, 751–62.

    Article  PubMed  CAS  Google Scholar 

  • Sandra, F., Degli Esposti, M., Ndebele, K., Gona, P., Knight, D., Rosenquist, M. & Khosravi-Far, R. (2005) Tumor necrosis factor-related apoptosis-inducing ligand alters mitochondrial membrane lipids. Cancer Res, 65, 8286–97.

    Article  PubMed  CAS  Google Scholar 

  • Schwer, B. & Guthrie, C. (1992) A conformational rearrangement in the spliceosome is dependent on PRP16 and ATP hydrolysis. Embo J, 11, 5033–9.

    PubMed  CAS  Google Scholar 

  • Tondera, D., Grandemange, S., Jourdain, A., Karbowski, M., Mattenberger, Y., Herzig, S., Da Cruz, S., Clerc, P., Raschke, I., Merkwirth, C., Ehses, S., Krause, F., Chan, D. C., Alexander, C., Bauer, C., Youle, R., Langer, T. & Martinou, J. C. (2009) SLP-2 is required for stress-induced mitochondrial hyperfusion. Embo J, 28, 1589–600.

    Article  PubMed  CAS  Google Scholar 

  • Tsuiki, H., Nitta, M., Furuya, A., Hanai, N., Fujiwara, T., Inagaki, M., Kochi, M., Ushio, Y., Saya, H. & Nakamura, H. (1999) A novel human nucleoside diphosphate (NDP) kinase, Nm23-H6, localizes in mitochondria and affects cytokinesis. J Cell Biochem, 76, 254–69.

    Article  PubMed  CAS  Google Scholar 

  • Twig, G., Graf, S. A., Wikstrom, J. D., Mohamed, H., Haigh, S. E., Elorza, A., Deutsch, M., Zurgil, N., Reynolds, N. & Shirihai, O. S. (2006) Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP. Am J Physiol Cell Physiol, 291, C176-84.

    Article  PubMed  CAS  Google Scholar 

  • Twig, G., Elorza, A., Molina, A. J., Mohamed, H., Wikstrom, J. D., Walzer, G., Stiles, L., Haigh, S. E., Katz, S., Las, G., Alroy, J., Wu, M., Py, B. F., Yuan, J., Deeney, J. T., Corkey, B. E. & Shirihai, O. S. (2008a) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. Embo J, 27, 433–46.

    Article  PubMed  CAS  Google Scholar 

  • Twig, G., Hyde, B. & Shirihai, O. S. (2008b) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta, 1777, 1092–7.

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi, J., Zhang, Z., Wakabayashi, N., Tamura, Y., Fukaya, M., Kensler, T. W., Iijima, M. & Sesaki, H. (2009) The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol, 186, 805–16.

    Article  PubMed  CAS  Google Scholar 

  • Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., Macgregor, G. R., Thompson, C. B. & Korsmeyer, S. J. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science, 292, 727–30.

    Article  PubMed  CAS  Google Scholar 

  • Yaffe, M. P. (1999) Dynamic mitochondria. Nat Cell Biol, 1, E149-50.

    Article  PubMed  CAS  Google Scholar 

  • Zorzano, A., Liesa, M. & Palacin, M. (2009a) Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes. Int J Biochem Cell Biol, 41, 1846–54.

    Article  PubMed  CAS  Google Scholar 

  • Zorzano, A., Sebastian, D., Segales, J. & Palacin, M. (2009b) The molecular machinery of mitochondrial fusion and fission: An opportunity for drug discovery? Curr Opin Drug Discov Devel, 12, 597–606.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the French National Institute for Scientific and Medical Research (INSERM), Université Victor Segalen Bordeaux 2, Région Aquitaine, Ammi, and Cancéropôle Grand Sud-Ouest for financial support. N. Bellance was supported by a Grant from INSERM/Région Aquitaine and G. Benard by a grant from ANR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigue Rossignol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Benard, G., Bellance, N., Jose, C., Rossignol, R. (2011). Relationships Between Mitochondrial Dynamics and Bioenergetics. In: Lu, B. (eds) Mitochondrial Dynamics and Neurodegeneration. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1291-1_2

Download citation

Publish with us

Policies and ethics