Skip to main content

Distributed Optimization of Local Area Networks

  • Chapter
  • 1317 Accesses

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

An important task of a cognitive radio is to learn and calibrate its behavior in the environment. How to achieve this efficiently is illustrated in this chapter for IEEE 802.11 networks that aim at minimizing the co-channel interference in a distributed way.

A novel control algorithm, Spatial Learning, is proposed, which learns the optimal operating point in a 3D design space at run-time. The learner interprets how the environment reacts to the selected actions and adapts his actions accordingly. Simulation-based experiments illustrate the trade-offs which need to be made, and the gains that can eventually be achieved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We use Jain’s Fairness Index as an indicator for fairness. This index is calculated as follows: \(f =\frac{(\sum_{i=1}^{n}S_{i})^{2}}{n\sum_{i=1}^{n}S_{i}^{2}}\) [40].

References

  1. J. Mitola, Cognitive Radio: An Integrated Architecture for Software-Defined Radio, PhD thesis, KTH Stockholm, 2000

    Google Scholar 

  2. R. Jain, D.-M. Chiu, W. Hawe, A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer Systems, DEC Technical Report 301 (1984)

    Google Scholar 

  3. M. Timmers, S. Pollin, A. Dejonghe, A. Bahai, L. Van der Perre, F. Catthoor, Throughput modeling of large-scale 802.11 networks, in Proc. of the Global Telecommunication Conference (Globecom), 2008

    Google Scholar 

  4. T.M. Mitchell, Machine Learning (McGraw-Hill, New York, 1997)

    MATH  Google Scholar 

  5. C. Hua, R. Zheng, Starvation modeling and identification in dense 802.11 wireless community networks, in Proc. of the IEEE International Conference on Computer Communications (Infocom), 2008, pp. 1022–1030. doi:10.1109/INFOCOM.2008.156

    Google Scholar 

  6. M. Krunz, A. Muqattash, S.J. Lee, Transmission power control in wireless ad hoc networks: Challenges, solutions and open issues. IEEE Netw. 18(5), 8–14 (2004)

    Article  Google Scholar 

  7. I. Broustis, J. Eriksson, S.V. Krishnamurthy, M. Faloutsos, Implications of power control in wireless networks: A quantitative study, in Passive and Active Network Measurement. Springer Lecture Notes in Computer Science, vol. 4427 (2007), pp. 83–93

    Chapter  Google Scholar 

  8. Y. Zhou, S. Nettles, Balancing the hidden and exposed node problems with power control in CSMA/CA-based wireless networks, in The IEEE Wireless Communications and Networking Conference, vol. 2, 2005, pp. 683–688

    Chapter  Google Scholar 

  9. J.A. Fuemmeler, N.H. Vaidya, V.V. Veeravalli, Selecting transmit powers and carrier sense thresholds in CSMA protocols for wireless ad hoc networks, in WICON ’06: Proceedings of the 2nd Annual International Workshop on Wireless Internet (ACM, New York, 2006), p. 15. ISBN 1-59593-510-X. doi:10.1145/1234161.1234176

    Chapter  Google Scholar 

  10. V.P. Mhatre, K. Papagiannaki, F. Baccelli, Interference mitigation through power control in high density 802.11 WLANs, in Proc. of the IEEE International Conference on Computer Communications (Infocom), 2007, pp. 535–543. doi:10.1109/INFCOM.2007.69

    Chapter  Google Scholar 

  11. X. Yang, N. Vaidya, A spatial backoff algorithm using the joint control of carrier sense threshold and transmission rate, in Proc. of the IEEE Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2007, pp. 501–511

    Chapter  Google Scholar 

  12. A. Kamerman, L. Monteban, WaveLAN®-II: A high-performance wireless LAN for the unlicensed band. Bell Labs Tech. J. 2(3), 118–133 (1997)

    Article  Google Scholar 

  13. M. Lacage, M. Manshaei, T. Turletti, IEEE 802.11 rate adaptation: A practical approach, in Proceedings of the 7th ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, 2004

    Google Scholar 

  14. G. Holland, N. Vaidya, P. Bahl, A rate-adaptive MAC protocol for multi-hop wireless networks, in Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, 2001

    Google Scholar 

  15. B. Sadeghi, V. Kanodia, A. Sabharwal, E. Knightly, Opportunistic media access for multirate ad hoc networks, in Proceedings of ACM MobiCom ’02, 2002

    Google Scholar 

  16. B. Chakravarty, Rate Control Algorithms for IEEE 802.11 Wireless Networks, Master’s thesis, The University of Texas at Arlington, 2007

    Google Scholar 

  17. J. Won, C. Kim, A downlink rate adaptation scheme in IEEE 802.11 WLANs using overhearing, in Intl. Conf. on Information Networking ICOIN ’08, Busan, Korea, 23–25 Jan. 2008, pp. 1–5

    Google Scholar 

  18. J. Choi, J. Na, Y. Lim, K. Park, C. Kim, Collision-aware design of rate adaptation for multi-rate 802.11 WLANs. IEEE J. Sel. Areas Commun. 26(8), 1366–1375 (2008)

    Article  Google Scholar 

  19. S. Khan, S. Mahmud, K. Loo, H. Alraweshidy, A cross layer rate adaptation solution for IEEE 802.11 networks. Comput. Commun. 31(8), 1638–1652 (2008)

    Article  Google Scholar 

  20. S. Lee, K. Chung, Combining the rate adaptation and quality adaptation schemes for wireless video streaming. J. Vis. Commun. Image Represent. 19(8), 508–519 (2008)

    Article  Google Scholar 

  21. H. Jung, K. Cho, Y. Seok, T. Kwon, Y. Choi, RARA: Rate adaptation using rate-adaptive acknowledgment for IEEE 802.11 WLANs, in Proceedings of the Consumer Communications and Networking Conference, 2008

    Google Scholar 

  22. J. Kim, S. Kim, S. Choi, D. Qiao, CARA: Collision-aware rate adaptation for IEEE 802.11 WLANs, in Proc. of the IEEE International Conference on Computer Communications (Infocom), 2006, pp. 1–11

    Chapter  Google Scholar 

  23. S. Wang, A. Helmy, BEWARE: Background traffic-aware rate adaptation for IEEE 802.11, in Proceedings of the 9th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Newport Beach, CA, June 2008

    Google Scholar 

  24. Y. Yang, J. Hou, L.-C. Kung, Modeling the effect of transmit power and physical carrier sense in multi-hop wireless networks, in Proc. of the IEEE International Conference on Computer Communications (Infocom), 2007, pp. 2331–2335. doi:10.1109/INFCOM.2007.275

    Chapter  Google Scholar 

  25. Z. Zeng, Y. Yang, J. Hou, How physical carrier sense affects system throughput in IEEE 802.11 wireless networks, in Proc. of the IEEE International Conference on Computer Communications (Infocom), 2008, pp. 1445–1453

    Google Scholar 

  26. F. Rossetto, M. Zorzi, Enhancing spatial reuse in ad hoc networks by carrier sense adaptation, in Proc. of the IEEE Military Communications Conference (MILCOM), 2007, pp. 1–6. doi:10.1109/MILCOM.2007.4455087

    Chapter  Google Scholar 

  27. E.B. Koh, C.-K. Kim, Mitigating starvation in CSMA-based wireless ad hoc networks using carrier sense threshold, in Proc. of the International Conference on Software, Telecommunications and Computer Networks, 2007, pp. 1–6

    Google Scholar 

  28. H. Ma, S. Shin, S. Roy, Optimizing throughput with carrier sensing adaptation for IEEE 802.11 mesh networks based on loss differentiation, in Proc. of the IEEE International Conference on Communications (ICC), 2007

    Google Scholar 

  29. X.-H. Lin, Y.-K. Kwok, V. Lau, Power control for IEEE 802.11 ad hoc networks: Issues and a new algorithm, in Proc. of the International Conference on Parallel Processing, 2003, pp. 249–256

    Google Scholar 

  30. B. Alawieh, Y. Zhang, C. Assi, A distributed power and rate control scheme for mobile ad hoc networks, in Proc. of the International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, 2008, pp. 335–343. doi:10.1109/WIOPT.2008.4586087

    Chapter  Google Scholar 

  31. T. Kim, H. Lim, J. Hou, Improving spatial reuse through tuning transmit power, carrier sense threshold, and data rate in multihop wireless networks, in Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, 2006

    Google Scholar 

  32. H.P. Young, Strategic Learning and Its Limits (Oxford University Press, Oxford, 2005)

    Google Scholar 

  33. Y. Shoham, R. Powers, T. Grenager, Multi-agent reinforcement learning: A critical survey, in AAAI Fall Symposium on Artificial Multi-Agent Learning, 2004

    Google Scholar 

  34. L. Busoniu, R. Babuska, B.D. Schutter, Multi-agent reinforcement learning: A survey, in Proc. of the 9th International Conference on Control, Automation, Robotics and Vision, 2006, pp. 1–6. doi:10.1109/ICARCV.2006.345353

    Chapter  Google Scholar 

  35. L. Busoniu, R. Babuska, B.D. Schutter, A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 38(2), 156–172 (2008)

    Article  Google Scholar 

  36. S. Mannor, J. Shamma, Multi-agent learning for engineers. Artif. Intell. 171(7), 417–422 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. S.O. Kimbrough, M. Lu, Simple reinforcement learning agents: Pareto beats Nash in an algorithmic game theory study. ISeB 3(1), 1–19 (2005)

    Article  Google Scholar 

  38. S. Hart, Adaptive heuristics. Econometrica 73(5), 1401–1430 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Y. Park, Y. Seok, N. Choi, Y. Choi, J. Bonnin, Rate-adaptive multimedia multicasting over IEEE 802.11 wireless LANs, in Proc. of the Consumer Communications and Networking Conference, vol. 1, 2005, pp. 178–182

    Google Scholar 

  40. M. Timmers, S. Pollin, A. Dejonghe, L. Van der Perre, F. Catthoor, Exploring versus exploiting: Enhanced distributed cognitive coexistence between IEEE 802.11 and IEEE 802.15.4, in Proc. of the IEEE Conference on Sensors, 2008

    Google Scholar 

  41. G. Bianchi, Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 18(3), 535–547 (2000)

    Article  Google Scholar 

  42. K. Fall, K. Varadhan, VINT project, The ns Manual, UC Berkeley, LBL, UCS/ISI, and Xerox PARC, http://www.isi.edu/nsnam/ns/ns-documentation.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofie Pollin .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pollin, S., Timmers, M., Van der Perre, L. (2011). Distributed Optimization of Local Area Networks. In: Software Defined Radios. Signals and Communication Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1278-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1278-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1277-5

  • Online ISBN: 978-94-007-1278-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics