Skip to main content

The Role of Glycosylation in Therapeutic Antibodies

  • Chapter
  • First Online:
Antibody Expression and Production

Part of the book series: Cell Engineering ((CEEN,volume 7))

Abstract

Monoclonal antibodies (Mabs) are biopharmaceuticals that are used increasingly for the treatment of a wide range of diseases such as cancer and autoimmunity. The effectiveness of therapeutic Mabs, most of which are immunoglobulin G (IgG), is dependent upon their ability to link antigen recognition with an appropriate effector function, to elicit a biological response in vivo that will treat the targeted disease. Studies over the last decade have determined that the effector function of Mabs is highly dependent upon the structure of the N-linked glycan of the Fc domain of the Mab. Total removal of the glycan is highly detrimental to the effector function of the Mab, but subtle differences in the glycan structure, such as the lack of fucose, can improve significantly bioactivity and function of the Mabs. Some Mabs are glycosylated in the variable Fab domain but in many cases the function is not known. The host cellular production system including the bioreactor environment can produce Mabs with very different glycosylation profiles that must be considered in bioprocess development. Cell culture conditions such as dissolved oxygen, nutrient levels, pH and feed strategies can all have considerable influence on the glycosylation of the Mab, which will affect product quality and efficacy. Great improvements have been made in techniques for high resolution and high throughput analysis of glycans such as normal phase-high performance liquid chromatography (HPLC) and mass spectrometry (MS). This has allowed a better understanding of the link between the structure and function, which will in turn lead to the development of safer and more effective Mabs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-AA:

2-aminobenzoic acid

2-AB:

2-aminobenzaminde

2-PA:

2-aminopyridine

ADCC:

Antibody-dependent cellular cytotoxicity

APTS:

1-aminopyrene-3,6,8-trisulfonate

Asn:

Asparagine

C1q:

Subcomponent of C1 of the complement cascade

CDC:

Complement-dependent cytotoxicity

CGE:

Capillary gel electrophoresis

CH1, CH2, or CH3:

Constant regions of the heavy chain of immunoglobulin

CHO:

Chinese hamster ovary

CIE:

Capillary ion electrophoresis

CL :

Constant region of the light chain of immunoglobulin

Dol-P:

Dolichol phosphate

ESI-TOF-MS:

Electrospray time-of-flight mass spectrometry

Fab:

Antibody binding fragment of immunoglobulin

Fc:

Crystalizable fragment of immunoglobulin

FcγR:

Fc gamma receptor

FT:

Fucosyltransferase

FUT8:

α1-6 fucosyltransferase

Fuc:

Fucose

Fv:

Variable region of immunoglobulin

Gal:

Galactose

GalT:

Galactosyltransferase

GDP:

Guanidine diphosphate

Glc:

Glucose

GlcNAc:

N-acetylglucosamine

GMD:

GDP-mannose 4,6 dehydratase

GU:

Glucose units

HACA:

Human anti-chimeric antibody

HAMA:

Human anti-mouse antibody

HEK:

Human embryonic kidney

HILIC:

Hydrophobic interaction liquid chromatography

HPAEC-PAD:

High performance anion exchange chromatography with pulsed amperometric detection

Ig:

Immunoglobulin

LC:

Liquid chromatography

LIF:

Laser-induced fluorescence

Mab:

Monoclonal antibody

MALDI-TOF:

Matrix-assisted laser desorption/ionization with time of flight

Man:

Mannose

ManNac:

N-acetylmannosamine

MS:

Mass spectrometry

NeuAc:

N-acetylneuraminic acid

Neu5Gc:

N-glycolylneuraminic acid

NP-HPLC:

Normal phase high performance liquid chromatography

RP-HPLC:

Reverse phase HPLC

Ser:

Serine

Thr:

Threonine

UDP:

Uridine diphosphate

VH :

Variable region of the heavy chain of immunoglobulin

VL :

Variable region of the light chain of immunoglobulin

XT:

Xylosyltransferase

References

  • Abès R, Teillaud J. 2010. Impact of glycosylation on effector functions of therapeutic IgG. Pharmaceuticals 3(1):146–157.

    Google Scholar 

  • Ahn J, Bones J, Yu YQ, Rudd PM, Gilar M. 2010. Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7 microm sorbent. J Chromatogr B Analyt Technol Biomed Life Sci 878(3–4):403–8.

    PubMed  CAS  Google Scholar 

  • Ahn M-H, Song M, Oh E-Y, Jamal A, Kim HS, Ko K, Choo Y-K, Kim B-J, Ko K. 2008. Production of therapeutic proteins with baculovirus expression system in insect cell. Entomol Res 38:S71–S78.

    Google Scholar 

  • Altmann F, Staudacher E, Wilson IB, Marz L. 1999. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj J 16(2):109–23.

    PubMed  CAS  Google Scholar 

  • Andersen DC, Bridges T, Gawlitzek M, Hoy C. 2000. Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator. Biotechnol Bioeng 70(1):25–31.

    PubMed  CAS  Google Scholar 

  • Andersen DC, Goochee CF. 1994. The effect of cell-culture conditions on the oligosaccharide structures of secreted glycoproteins. Curr Opin Biotechnol 5(5):546–9.

    PubMed  CAS  Google Scholar 

  • Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV. 2008. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320(5874):373–6.

    PubMed  CAS  Google Scholar 

  • Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. 2007. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50.

    PubMed  CAS  Google Scholar 

  • Backovic M, Johansson DX, Klupp BG, Mettenleiter TC, Persson MA, Rey FA. 2010. Efficient method for production of high yields of Fab fragments in Drosophila S2 cells. Protein Eng Des Sel 23(4):169–74.

    PubMed  CAS  Google Scholar 

  • Baerenwaldt A, Biburger M, Nimmerjahn F. 2010. Mechanisms of action of intravenous immunoglobulins. Expert Rev Clin Immunol 6(3):425–34.

    PubMed  CAS  Google Scholar 

  • Bailey MJ, Hooker AD, Adams CS, Zhang S, James DC. 2005. A platform for high-throughput molecular characterization of recombinant monoclonal antibodies. J Chromatogr B Anal Technol Biomed Life Sci 826:177–87.

    CAS  Google Scholar 

  • Baker KN, Rendall MH, Hills AE, Hoare M, Freedman RB, James DC. 2001. Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol Bioeng 73(3):188–202.

    PubMed  CAS  Google Scholar 

  • Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P, et al. 2001. Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci USA 98(5):2899–904.

    PubMed  CAS  Google Scholar 

  • Bakker H, Rouwendal GJ, Karnoup AS, Florack DE, Stoopen GM, Helsper JP, van Ree R, van Die I, Bosch D. 2006. An antibody produced in tobacco expressing a hybrid beta-1,4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes. Proc Natl Acad Sci USA 103(20):7577–82.

    PubMed  CAS  Google Scholar 

  • Barbin K, Stieglmaier J, Saul D, Stieglmaier K, Stockmeyer B, Pfeiffer M, Lang P, Fey GH. 2006. Influence of variable N-glycosylation on the cytolytic potential of chimeric CD19 antibodies. J Immunother 29(2):122–33.

    PubMed  CAS  Google Scholar 

  • Beck A, Wagner-Rousset E, Bussat MC, Lokteff M, Klinguer-Hamour C, Haeuw JF, Goetsch L, Wurch T, Van Dorsselaer A, Corvaia N. 2008. Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins. Curr Pharm Biotechnol 9(6):482–501.

    PubMed  CAS  Google Scholar 

  • Becker E, Florin L, Pfizenmaier K, Kaufmann H. 2008. An XBP-1 dependent bottle-neck in production of IgG subtype antibodies in chemically defined serum-free Chinese hamster ovary (CHO) fed-batch processes. J Biotechnol 135:217–23.

    PubMed  CAS  Google Scholar 

  • Bieber MM, Twist CJ, Bhat NM, Teng NN. 2007. Effects of human monoclonal antibody 216 on B-progenitor acute lymphoblastic leukemia in vitro. Pediatr Blood Cancer 48(4):380–6.

    PubMed  Google Scholar 

  • Borys MC, Linzer DI, Papoutsakis ET. 1993. Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. Biotechnology (NY) 11(6):720–4.

    CAS  Google Scholar 

  • Boyd PN, Lines AC, Patel AK. 1995. The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol Immunol 32(17–18):1311–18.

    PubMed  CAS  Google Scholar 

  • Bragonzi A, Distefano G, Buckberry LD, Acerbis G, Foglieni C, Lamotte D, Campi G, Marc A, Soria MR, Jenkins N, et al. 2000. A new Chinese hamster ovary cell line expressing alpha2,6-sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins. Biochim Biophys Acta 1474(3):273–82.

    PubMed  CAS  Google Scholar 

  • Brekke OH, Sandlie I. 2003. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov 2(1):52–62.

    PubMed  CAS  Google Scholar 

  • Burton DR, Dwek RA. 2006. Immunology. Sugar determines antibody activity. Science 313(5787):627–8.

    PubMed  CAS  Google Scholar 

  • Butler M. 2006. Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by Mammalian cell systems. Cytotechnology 50(1–3):57–76.

    PubMed  CAS  Google Scholar 

  • Butler M, Perreault H. 2010. Approaches and methods for determining Glycosylation. In Encyclopedia of Industrial Biotechnology, Bioprocess, Bioseparation, and Cell Technology (Flickinger MC, Editor) Wiley, NY.

    Google Scholar 

  • Cabrera G, Cremata JA, Valdes R, Garcia R, Gonzalez Y, Montesino R, Gomez H, Gonzalez M. 2005. Influence of culture conditions on the N-glycosylation of a monoclonal antibody specific for recombinant hepatitis B surface antigen. Biotechnol Appl Biochem 41:67–76.

    PubMed  CAS  Google Scholar 

  • Campbell MP, Royle L, Radcliffe CM, Dwek RA, Rudd PM. 2008. GlycoBase and autoGU: tools for HPLC-based glycan analysis. Bioinformatics 24(9):1214–16.

    PubMed  CAS  Google Scholar 

  • Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H. 2002. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99(3):754–8.

    PubMed  CAS  Google Scholar 

  • Castilho A, Strasser R, Stadlmann J, Grass J, Jez J, Gattinger P, Kunert R, Quendler H, Pabst M, Leonard R, et al. 2010. In planta protein sialylation through overexpression of the respective mammalian pathway. J Biol Chem 285(21):15923–30.

    PubMed  CAS  Google Scholar 

  • Chiba Y, Akeboshi H. 2009. Glycan engineering and production of ‘humanized’ glycoprotein in yeast cells. Biol Pharm Bull 32(5):786–95.

    PubMed  CAS  Google Scholar 

  • Chiba Y, Jigami Y. 2007. Production of humanized glycoproteins in bacteria and yeasts. Curr Opin Chem Biol 11(6):670–6.

    PubMed  CAS  Google Scholar 

  • Chiba Y, Suzuki M, Yoshida S, Yoshida A, Ikenaga H, Takeuchi M, Jigami Y, Ichishima E. 1998. Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J Biol Chem 273(41):26298–304.

    PubMed  CAS  Google Scholar 

  • Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU. 2003. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci USA 100(9):5022–7.

    PubMed  CAS  Google Scholar 

  • Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, et al. 2008. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358(11):1109–17.

    PubMed  CAS  Google Scholar 

  • Clarke A, Harmon B, DeFelippis MR. 2009. Analysis of 3-(acetylamino)-6-aminoacridine-derivatized oligosaccharides from recombinant monoclonal antibodies by liquid chromatography-mass spectrometry. Anal Biochem 390(2):209–11.

    PubMed  CAS  Google Scholar 

  • Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M, et al. 2006. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24(12):1591–7.

    PubMed  CAS  Google Scholar 

  • Crispin M, Bowden TA, Coles CH, Harlos K, Aricescu AR, Harvey DJ, Stuart DI, Jones EY. 2009. Carbohydrate and domain architecture of an immature antibody glycoform exhibiting enhanced effector functions. J Mol Biol 387(5):1061–6.

    PubMed  CAS  Google Scholar 

  • Cruz HJ, Conradt HS, Dunker R, Peixoto CM, Cunha AE, Thomaz M, Burger C, Dias EM, Clemente J, Moreira JL, Rieke E, Carrondo MJ. 2002. Process development of a recombinant antibody/interleukin-2 fusion protein expressed in protein-free medium by BHK cells. J Biotechnol 96:169–83.

    PubMed  CAS  Google Scholar 

  • Dechant M, Beyer T, Schneider-Merck T, Weisner W, Peipp M, van de Winkel JG, Valerius T. 2007. Effector mechanisms of recombinant IgA antibodies against epidermal growth factor receptor. J Immunol 179(5):2936–43.

    PubMed  CAS  Google Scholar 

  • Deisenhofer J. 1981. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry 20(9):2361–70.

    PubMed  CAS  Google Scholar 

  • Dhume ST, Saddic GN, Anumula KR. 2008. Monitoring glycosylation of therapeutic glycoproteins for consistency by HPLC using highly fluorescent anthranilic acid (AA) tag. Methods Mol Biol 446:317–31.

    PubMed  CAS  Google Scholar 

  • Dillon TM, Bondarenko PV, Rehder DS, Pipes GD, Kleemann GR, Ricci MS. 2006. Optimization of a reversed-phase high-performance liquid chromatography/mass spectrometry method for characterizing recombinant antibody heterogeneity and stability. J Chromatogr A 1120:112–20.

    PubMed  CAS  Google Scholar 

  • Domann PJ, Pardos-Pardos AC, Fernandes DL, Spencer DI, Radcliffe CM, Royle L, Dwek RA, Rudd PM. 2007. Separation-based glycoprofiling approaches using fluorescent labels. Proteomics 7(Suppl 1):70–6.

    PubMed  Google Scholar 

  • Endo T, Wright A, Morrison SL, Kobata A. 1995. Glycosylation of the variable region of immunoglobulin G–site specific maturation of the sugar chains. Mol Immunol 32(13):931–40.

    PubMed  CAS  Google Scholar 

  • Ferrara C, Brunker P, Suter T, Moser S, Puntener U, Umana P. 2006a. Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93(5):851–61.

    PubMed  CAS  Google Scholar 

  • Ferrara C, Stuart F, Sondermann P, Brunker P, Umana P. 2006b. The carbohydrate at FcgammaRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J Biol Chem 281(8):5032–6.

    PubMed  CAS  Google Scholar 

  • Gala FA, Morrison SL. 2002. The role of constant region carbohydrate in the assembly and secretion of human IgD and IgA1. J Biol Chem 277(32):29005–11.

    PubMed  CAS  Google Scholar 

  • Galbraith DJ, Tait AS, Racher AJ, Birch JR, James DC. 2006. Control of culture environment for improved polyethylenimine-mediated transient production of recombinant monoclonal antibodies by CHO cells. Biotechnol Prog 22:753–62.

    PubMed  CAS  Google Scholar 

  • Galili U. 2004. Immune response, accommodation, and tolerance to transplantation carbohydrate antigens. Transplantation 78(8):1093–8.

    PubMed  CAS  Google Scholar 

  • Gasser B, Mattanovich D. 2007. Antibody production with yeasts and filamentous fungi: on the road to large scale? Biotechnol Lett 29(2):201–12.

    PubMed  CAS  Google Scholar 

  • Gaza-Bulseco G, Bulseco A, Chumsae C, Liu H. 2008. Characterization of the glycosylation state of a recombinant monoclonal antibody using weak cation exchange chromatography and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 862(1–2):155–60.

    PubMed  CAS  Google Scholar 

  • Gaza-Bulseco G, Hickman K, Sinicropi-Yao S, Hurkmans K, Chumsae C, Liu H. 2009. Effect of the conserved oligosaccharides of recombinant monoclonal antibodies on the separation by protein A and protein G chromatography. J Chromatogr A 1216:2382–7.

    PubMed  CAS  Google Scholar 

  • Gennaro LA, Salas-Solano O. 2008. On-line CE-LIF-MS technology for the direct characterization of N-linked glycans from therapeutic antibodies. Anal Chem 80(10):3838–45.

    PubMed  CAS  Google Scholar 

  • Gerngross TU. 2004. Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22(11):1409–14.

    PubMed  CAS  Google Scholar 

  • Ghaderi D, Taylor RE, Padler-Karavani V, Diaz S, Varki A. 2010. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 28(8):863–7.

    PubMed  CAS  Google Scholar 

  • Ghirlando R, Lund J, Goodall M, Jefferis R. 1999. Glycosylation of human IgG-Fc: influences on structure revealed by differential scanning micro-calorimetry. Immunol Lett 68(1):47–52.

    PubMed  CAS  Google Scholar 

  • Godoy-Silva R, Chalmers JJ, Casnocha SA, Bass LA, Ma N. 2009. Physiological responses of CHO cells to repetitive hydrodynamic stress. Biotechnol Bioeng 103(6):1103–17.

    PubMed  CAS  Google Scholar 

  • Grey C, Edebrink P, Krook M, Jacobsson SP. 2009. Development of a high performance anion exchange chromatography analysis for mapping of oligosaccharides. J Chromatogr B Analyt Technol Biomed Life Sci 877(20–21):1827–32.

    PubMed  CAS  Google Scholar 

  • Guile GR, Rudd PM, Wing DR, Prime SB, Dwek RA. 1996. A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal Biochem 240(2):210–26.

    PubMed  CAS  Google Scholar 

  • Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, et al. 2003. Production of complex human glycoproteins in yeast. Science 301(5637):1244–6.

    PubMed  CAS  Google Scholar 

  • Hang HC, Bertozzi CR. 2005. The chemistry and biology of mucin-type O-linked glycosylation. Bioorg Med Chem 13(17):5021–34.

    PubMed  CAS  Google Scholar 

  • Hansen R, Dickson AJ, Goodacre R, Stephens GM, Sellick CA. 2010. Rapid characterization of N-linked glycans from secreted and gel-purified monoclonal antibodies using MALDI-ToF mass spectrometry. Biotechnol Bioeng 107(5):902–8.

    PubMed  CAS  Google Scholar 

  • Harvey DJ, Crispin M, Scanlan C, Singer BB, Lucka L, Chang VT, Radcliffe CM, Thobhani S, Yuen CT, Rudd PM. 2008. Differentiation between isomeric triantennary N-linked glycans by negative ion tandem mass spectrometry and confirmation of glycans containing galactose attached to the bisecting (beta1-4-GlcNAc) residue in N-glycans from IgG. Rapid Commun Mass Spectrom 22(7):1047–52.

    PubMed  CAS  Google Scholar 

  • Hashim OH, Cushley W. 1987. Role of processing of N-linked oligosaccharides in control of immunoglobulin secretion from rat hybridomas. Mol Immunol 24(10):1087–96.

    PubMed  CAS  Google Scholar 

  • Hayter PM, Curling EM, Baines AJ, Jenkins N, Salmon I, Strange PG, Tong JM, Bull AT. 1992. Glucose-limited chemostat culture of Chinese hamster ovary cells producing recombinant human interferon-gamma. Biotechnol Bioeng 39(3):327–35.

    PubMed  CAS  Google Scholar 

  • Hermes PA, Castro CD. 2010. A fully defined, fed-batch, recombinant NS0 culture process for monoclonal antibody production. Biotechnol Prog 26:1411–1416 (May 2010 online advaned publication).

    PubMed  CAS  Google Scholar 

  • Hills AE, Patel A, Boyd P, James DC. 2001. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Biotechnol Bioeng 75:239–51.

    PubMed  CAS  Google Scholar 

  • Hodoniczky J, Zheng YZ, James DC. 2005. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog 21(6):1644–52.

    PubMed  CAS  Google Scholar 

  • Horvath B, Mun M, Laird MW. 2010. Characterization of a monoclonal antibody cell culture production process using a quality by design approach. Mol Biotechnol 45(3):203–6.

    PubMed  CAS  Google Scholar 

  • Houdebine LM. 2009. Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 32(2):107–21.

    PubMed  Google Scholar 

  • Hsu TA, Takahashi N, Tsukamoto Y, Kato K, Shimada I, Masuda K, Whiteley EM, Fan JQ, Lee YC, Betenbaugh MJ. 1997. Differential N-glycan patterns of secreted and intracellular IgG produced in Trichoplusia ni cells. J Biol Chem 272(14):9062–70.

    PubMed  CAS  Google Scholar 

  • Huang L, Biolsi S, Bales KR, Kuchibhotla U. 2006. Impact of variable domain glycosylation on antibody clearance: an LC/MS characterization. Anal Biochem 349(2):197–207.

    PubMed  CAS  Google Scholar 

  • Huhn C, Selman MH, Ruhaak LR, Deelder AM, Wuhrer M. 2009. IgG glycosylation analysis. Proteomics 9:882–913.

    PubMed  CAS  Google Scholar 

  • Iida S, Misaka H, Inoue M, Shibata M, Nakano R, Yamane-Ohnuki N, Wakitani M, Yano K, Shitara K, Satoh M. 2006. Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcgammaRIIIa. Clin Cancer Res 12(9):2879–87.

    PubMed  CAS  Google Scholar 

  • Imai-Nishiya H, Mori K, Inoue M, Wakitani M, Iida S, Shitara K, Satoh M. 2007. Double knockdown of alpha1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol 7:84.

    PubMed  Google Scholar 

  • Irie RF, Ollila DW, O’Day S, Morton DL. 2004. Phase I pilot clinical trial of human IgM monoclonal antibody to ganglioside GM3 in patients with metastatic melanoma. Cancer Immunol Immunother 53(2):110–17.

    PubMed  CAS  Google Scholar 

  • Jacquemin M, Radcliffe CM, Lavend’homme R, Wormald MR, Vanderelst L, Wallays G, Dewaele J, Collen D, Vermylen J, Dwek RA, et al. 2006. Variable region heavy chain glycosylation determines the anticoagulant activity of a factor VIII antibody. J Thromb Haemost 4(5):1047–55.

    PubMed  CAS  Google Scholar 

  • Jarvis DL. 2003. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology 310(1):1–7.

    PubMed  CAS  Google Scholar 

  • Jefferis R. 2005a. Glycosylation of natural and recombinant antibody molecules. Adv Exp Med Biol 564:143–8.

    PubMed  CAS  Google Scholar 

  • Jefferis R. 2005b. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 21(1):11–16.

    PubMed  CAS  Google Scholar 

  • Jefferis R. 2007. Antibody therapeutics: isotype and glycoform selection. Expert Opin Biol Ther 7(9):1401–13.

    PubMed  CAS  Google Scholar 

  • Jones D, Kroos N, Anema R, van Montfort B, Vooys A, van der Kraats S, van der Helm E, Smits S, Schouten J, Brouwer K, et al. 2003. High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol Prog 19(1):163–8.

    PubMed  CAS  Google Scholar 

  • Jung ST, Reddy ST, Kang TH, Borrok MJ, Sandlie I, Tucker PW, Georgiou G. 2010. Aglycosylated IgG variants expressed in bacteria that selectively bind FcgammaRI potentiate tumor cell killing by monocyte-dendritic cells. Proc Natl Acad Sci USA 107(2):604–9.

    PubMed  CAS  Google Scholar 

  • Kanda Y, Imai-Nishiya H, Kuni-Kamochi R, Mori K, Inoue M, Kitajima-Miyama K, Okazaki A, Iida S, Shitara K, Satoh M. 2007a. Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. J Biotechnol 130(3):300–10.

    PubMed  CAS  Google Scholar 

  • Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, Kuni-Kamochi R, Nakano R, Yano K, Kakita S, et al. 2007b. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 17(1):104–18.

    PubMed  CAS  Google Scholar 

  • Kanda Y, Yamane-Ohnuki N, Sakai N, Yamano K, Nakano R, Inoue M, Misaka H, Iida S, Wakitani M, Konno Y, et al. 2006. Comparison of cell lines for stable production of fucose-negative antibodies with enhanced ADCC. Biotechnol Bioeng 94(4):680–8.

    PubMed  CAS  Google Scholar 

  • Kaneko Y, Nimmerjahn F, Ravetch JV. 2006. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313(5787):670–3.

    PubMed  CAS  Google Scholar 

  • Kaneko Y, Sato R, Aoyagi H. 2010. Evaluation of Chinese hamster ovary cell stability during repeated batch culture for large-scale antibody production. J Biosci Bioeng 109(3):274–80.

    PubMed  CAS  Google Scholar 

  • Kato T, Kajikawa M, Maenaka K, Park EY. 2010. Silkworm expression system as a platform technology in life science. Appl Microbiol Biotechnol 85(3):459–70.

    PubMed  CAS  Google Scholar 

  • Kawasaki N, Itoh S, Hashii N, Takakura D, Qin Y, Huang X, Yamaguchi T. 2009. The significance of glycosylation analysis in development of biopharmaceuticals. Biol Pharm Bull 32(5):796–800.

    PubMed  CAS  Google Scholar 

  • Khetan A, Huang YM, Dolnikova J, Pederson NE, Wen D, Yusuf-Makagiansar H, Chen P, Ryll T. 2010. Control of misincorporation of serine for asparagine during antibody production using CHO cells. Biotechnol Bioeng 107(1):116–23.

    PubMed  CAS  Google Scholar 

  • Kim WD, Tokunaga M, Ozaki H, Ishibashi T, Honda K, Kajiura H, Fujiyama K, Asano R, Kumagai I, Omasa T, et al. 2010. Glycosylation pattern of humanized IgG-like bispecific antibody produced by recombinant CHO cells. Appl Microbiol Biotechnol 85(3):535–42.

    PubMed  CAS  Google Scholar 

  • Ko K, Brodzik R, Steplewski Z. 2009. Production of antibodies in plants: approaches and perspectives. Curr Top Microbiol Immunol 332:55–78.

    PubMed  CAS  Google Scholar 

  • Ko K, Tekoah Y, Rudd PM, Harvey DJ, Dwek RA, Spitsin S, Hanlon CA, Rupprecht C, Dietzschold B, Golovkin M, et al. 2003. Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci USA 100(13):8013–18.

    PubMed  CAS  Google Scholar 

  • Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P. 2003. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 325(5):979–89.

    PubMed  CAS  Google Scholar 

  • Kunkel JP, Jan DC, Jamieson JC, Butler M. 1998. Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody. J Biotechnol 62(1):55–71.

    PubMed  CAS  Google Scholar 

  • Kuster B, Wheeler SF, Hunter AP, Dwek RA, Harvey DJ. 1997. Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal Biochem 250:82–101.

    PubMed  CAS  Google Scholar 

  • Lattova E, Chen VC, Varma S, Bezabeh T, Perreault H. 2007. Matrix-assisted laser desorption/ionization on-target method for the investigation of oligosaccharides and glycosylation sites in glycopeptides and glycoproteins. Rapid Commun Mass Spectrom 21(10):1644–50.

    PubMed  CAS  Google Scholar 

  • Lattova E, Kapkova P, Krokhin O, Perreault H. 2006. Method for investigation of oligosaccharides from glycopeptides: direct determination of glycosylation sites in proteins. Anal Chem 78(9):2977–84.

    PubMed  CAS  Google Scholar 

  • Lattova E, Tomanek B, Bartusik D, Perreault H. 2010. N-glycomic changes in human breast carcinoma MCF-7 and T-lymphoblastoid cells after treatment with herceptin and herceptin/Lipoplex. J Proteome Res 9(3):1533–40.

    PubMed  CAS  Google Scholar 

  • Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi BK, Cook WJ, Cukan M, et al. 2006. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24(2):210–15.

    PubMed  CAS  Google Scholar 

  • Lifely MR, Hale C, Boyce S, Keen MJ, Phillips J. 1995. Glycosylation and biological activity of CAMPATH-1H expressed in different cell lines and grown under different culture conditions. Glycobiology 5(8):813–22.

    PubMed  CAS  Google Scholar 

  • Lim A, Reed-Bogan A, Harmon BJ. 2008. Glycosylation profiling of a therapeutic recombinant monoclonal antibody with two N-linked glycosylation sites using liquid chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer. Anal Biochem 375(2):163–72.

    PubMed  CAS  Google Scholar 

  • Liu H, Bulseco GG, Sun J. 2006. Effect of posttranslational modifications on the thermal stability of a recombinant monoclonal antibody. Immunol Lett 106(2):144–53.

    PubMed  CAS  Google Scholar 

  • Liu Y, Salas-Solano O, Gennaro LA. 2009. Investigation of sample preparation artifacts formed during the enzymatic release of N-linked glycans prior to analysis by capillary electrophoresis. Anal Chem 81(16):6823–9.

    PubMed  CAS  Google Scholar 

  • Lund J, Takahashi N, Pound JD, Goodall M, Jefferis R. 1996. Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human Fc gamma receptor I and influence the synthesis of its oligosaccharide chains. J Immunol 157(11):4963–9.

    PubMed  CAS  Google Scholar 

  • Mahassni SH, Klapper DG, Hiskey RG. 2009. Purification of a murine IgM monoclonal antibody. Hybridoma (Larchmt) 28(3):189–97.

    CAS  Google Scholar 

  • Majid FA, Butler M, Al-Rubeai M. 2007. Glycosylation of an immunoglobulin produced from a murine hybridoma cell line: the effect of culture mode and the anti-apoptotic gene, bcl-2. Biotechnol Bioeng 97(1):156–69.

    PubMed  CAS  Google Scholar 

  • Marino K, Bones J, Kattla JJ, Rudd PM. 2010. A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol 6(10):713–23.

    PubMed  CAS  Google Scholar 

  • Martinez T, Pace D, Brady L, Gerhart M, Balland A. 2007. Characterization of a novel modification on IgG2 light chain. Evidence for the presence of O-linked mannosylation. J Chromatogr A 1156(1–2):183–7.

    PubMed  CAS  Google Scholar 

  • Matsumiya S, Yamaguchi Y, Saito J, Nagano M, Sasakawa H, Otaki S, Satoh M, Shitara K, Kato K. 2007. Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J Mol Biol 368(3):767–79.

    PubMed  CAS  Google Scholar 

  • McCann KJ, Ottensmeier CH, Callard A, Radcliffe CM, Harvey DJ, Dwek RA, Rudd PM, Sutton BJ, Hobby P, Stevenson FK. 2008. Remarkable selective glycosylation of the immunoglobulin variable region in follicular lymphoma. Mol Immunol 45(6):1567–72.

    PubMed  CAS  Google Scholar 

  • Mehta A, Block TM. 2008. Fucosylated glycoproteins as markers of liver disease. Dis Markers 25(4–5):259–65.

    PubMed  CAS  Google Scholar 

  • Millward TA, Heitzmann M, Bill K, Langle U, Schumacher P, Forrer K. 2008. Effect of constant and variable domain glycosylation on pharmacokinetics of therapeutic antibodies in mice. Biologicals 36(1):41–7.

    PubMed  CAS  Google Scholar 

  • Mimura Y, Church S, Ghirlando R, Ashton PR, Dong S, Goodall M, Lund J, Jefferis R. 2000. The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol Immunol 37(12–13):697–706.

    PubMed  CAS  Google Scholar 

  • Mimura Y, Sondermann P, Ghirlando R, Lund J, Young SP, Goodall M, Jefferis R. 2001. Role of oligosaccharide residues of IgG1-Fc in Fc gamma RIIb binding. J Biol Chem 276(49):45539–47.

    PubMed  CAS  Google Scholar 

  • Miranda LR, Duval M, Doherty H, Seaman MS, Posner MR, Cavacini LA. 2007. The neutralization properties of a HIV-specific antibody are markedly altered by glycosylation events outside the antigen-binding domain. J Immunol 178(11):7132–8.

    PubMed  CAS  Google Scholar 

  • Mori K, Kuni-Kamochi R, Yamane-Ohnuki N, Wakitani M, Yamano K, Imai H, Kanda Y, Niwa R, Iida S, Uchida K, et al. 2004. Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol Bioeng 88(7):901–8.

    PubMed  CAS  Google Scholar 

  • Muthing J, Kemminer SE, Conradt HS, Sagi D, Nimtz M, Karst U, Peter-Katalinic J. 2003. Effects of buffering conditions and culture pH on production rates and glycosylation of clinical phase I antimelanoma mouse IgG3 monoclonal antibody R24. Biotechnol Bioeng 83:321–34.

    PubMed  Google Scholar 

  • Natsume A, Wakitani M, Yamane-Ohnuki N, Shoji-Hosaka E, Niwa R, Uchida K, Satoh M, Shitara K. 2005. Fucose removal from complex-type oligosaccharide enhances the antibody-dependent cellular cytotoxicity of single-gene-encoded antibody comprising a single-chain antibody linked the antibody constant region. J Immunol Methods 306(1–2):93–103.

    PubMed  CAS  Google Scholar 

  • Natsume A, Wakitani M, Yamane-Ohnuki N, Shoji-Hosaka E, Niwa R, Uchida K, Satoh M, Shitara K. 2006. Fucose removal from complex-type oligosaccharide enhances the antibody-dependent cellular cytotoxicity of single-gene-encoded bispecific antibody comprising of two single-chain antibodies linked to the antibody constant region. J Biochem 140(3):359–68.

    PubMed  CAS  Google Scholar 

  • Niwa R, Shoji-Hosaka E, Sakurada M, Shinkawa T, Uchida K, Nakamura K, Matsushima K, Ueda R, Hanai N, Shitara K. 2004. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res 64(6):2127–33.

    PubMed  CAS  Google Scholar 

  • Nuttall J, Ma JK, Frigerio L. 2005. A functional antibody lacking N-linked glycans is efficiently folded, assembled and secreted by tobacco mesophyll protoplasts. Plant Biotechnol J 3(5):497–504.

    PubMed  CAS  Google Scholar 

  • Okazaki A, Shoji-Hosaka E, Nakamura K, Wakitani M, Uchida K, Kakita S, Tsumoto K, Kumagai I, Shitara K. 2004. Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa. J Mol Biol 336(5):1239–49.

    PubMed  CAS  Google Scholar 

  • Orzaez D, Granell A, Blazquez MA. 2009. Manufacturing antibodies in the plant cell. Biotechnol J 4(12):1712–24.

    PubMed  CAS  Google Scholar 

  • Padlan E. 1991. Biological significance of carbohydrate chains on monoclonal antibodies. Proc Natl Acad Sci USA 80:6632–36.

    Google Scholar 

  • Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K, et al. 1985. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316(6027):452–7.

    PubMed  CAS  Google Scholar 

  • Patel TP, Parekh RB, Moellering BJ, Prior CP. 1992. Different culture methods lead to differences in glycosylation of a murine IgG monoclonal antibody. Biochem J 285 (Pt 3):839–45.

    PubMed  CAS  Google Scholar 

  • Peipp M, Lammerts van Bueren JJ, Schneider-Merck T, Bleeker WW, Dechant M, Beyer T, Repp R, van Berkel PH, Vink T, van de Winkel JG, et al. 2008. Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells. Blood 112(6):2390–9.

    PubMed  CAS  Google Scholar 

  • Prater BD, Connelly HM, Qin Q, Cockrill SL. 2009. High-throughput immunoglobulin G N-glycan characterization using rapid resolution reverse-phase chromatography tandem mass spectrometry. Anal Biochem 385:69–79.

    PubMed  CAS  Google Scholar 

  • Radaev S, Motyka S, Fridman WH, Sautes-Fridman C, Sun PD. 2001. The structure of a human type III Fcgamma receptor in complex with Fc. J Biol Chem 276(19):16469–77.

    PubMed  CAS  Google Scholar 

  • Radcliffe CM, Arnold JN, Suter DM, Wormald MR, Harvey DJ, Royle L, Mimura Y, Kimura Y, Sim RB, Inoges S, et al. 2007. Human follicular lymphoma cells contain oligomannose glycans in the antigen-binding site of the B-cell receptor. J Biol Chem 282(10):7405–15.

    PubMed  CAS  Google Scholar 

  • Raju TS, Briggs JB, Borge SM, Jones AJ. 2000. Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10(5):477–86.

    PubMed  CAS  Google Scholar 

  • Raju TS, Briggs JB, Chamow SM, Winkler ME, Jones AJ. 2001. Glycoengineering of therapeutic glycoproteins: in vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues. Biochemistry 40(30):8868–76.

    PubMed  CAS  Google Scholar 

  • Raju TS, Scallon B. 2007. Fc glycans terminated with N-acetylglucosamine residues increase antibody resistance to papain. Biotechnol Prog 23(4):964–71.

    PubMed  CAS  Google Scholar 

  • Reid CQ, Tait A, Baldascini H, Mohindra A, Racher A, Bilsborough S, Smales CM, Hoare M. 2010. Rapid whole monoclonal antibody analysis by mass spectrometry: an ultra scale-down study of the effect of harvesting by centrifugation on the post-translational modification profile. Biotechnol Bioeng 107(1):85–95.

    PubMed  CAS  Google Scholar 

  • Restelli V, Wang MD, Huzel N, Ethier M, Perreault H, Butler M. 2006. The effect of dissolved oxygen on the production and the glycosylation profile of recombinant human erythropoietin produced from CHO cells. Biotechnol Bioeng 94(3):481–94.

    PubMed  CAS  Google Scholar 

  • Rook GA, Steele J, Brealey R, Whyte A, Isenberg D, Sumar N, Nelson JL, Bodman KB, Young A, Roitt IM, et al. 1991. Changes in IgG glycoform levels are associated with remission of arthritis during pregnancy. J Autoimmun 4(5):779–94.

    PubMed  CAS  Google Scholar 

  • Rothman RJ, Perussia B, Herlyn D, Warren L. 1989a. Antibody-dependent cytotoxicity mediated by natural killer cells is enhanced by castanospermine-induced alterations of IgG glycosylation. Mol Immunol 26(12):1113–23.

    PubMed  CAS  Google Scholar 

  • Rothman RJ, Warren L, Vliegenthart JF, Hard KJ. 1989b. Clonal analysis of the glycosylation of immunoglobulin G secreted by murine hybridomas. Biochemistry 28(3):1377–84.

    PubMed  CAS  Google Scholar 

  • Royle L, Campbell MP, Radcliffe CM, White DM, Harvey DJ, Abrahams JL, Kim YG, Henry GW, Shadick NA, Weinblatt ME, et al. 2008. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 376(1):1–12.

    PubMed  CAS  Google Scholar 

  • Royle L, Radcliffe CM, Dwek R, Rudd P. 2007. Detailed structural analysis of N-glycans released from glycoproteins in SDS-PAGE gell bands using HPLC combined with exoglycosidase array digestions. In Glycobiology Protocols (Brockhausen I, Editor), “Methods in Molecular Biology” vol. 347. Humana Press, Totowa, NJ.

    Google Scholar 

  • Rudd PM, Leatherbarrow RJ, Rademacher TW, Dwek RA. 1991. Diversification of the IgG molecule by oligosaccharides. Mol Immunol 28(12):1369–78.

    PubMed  CAS  Google Scholar 

  • Saint-Jore-Dupas C, Faye L, Gomord V. 2007. From planta to pharma with glycosylation in the toolbox. Trends Biotechnol 25(7):317–23.

    PubMed  CAS  Google Scholar 

  • Sandoval WN, Pham V, Ingle ES, Liu PS, Lill JR. 2007. Applications of microwave-assisted proteomics in biotechnology. Comb Chem High Throughput Screen 10:751–65.

    PubMed  CAS  Google Scholar 

  • Saldova R, Wormald MR, Dwek RA, Rudd PM. 2008. Glycosylation changes on serum glycoproteins in ovarian cancer may contribute to disease pathogenesis. Dis Markers 25(4–5):219–32.

    PubMed  CAS  Google Scholar 

  • Salfeld JG. 2007. Isotype selection in antibody engineering. Nat Biotechnol 25(12):1369–72.

    PubMed  CAS  Google Scholar 

  • Sarmay G, Lund J, Rozsnyay Z, Gergely J, Jefferis R. 1992. Mapping and comparison of the interaction sites on the Fc region of IgG responsible for triggering antibody dependent cellular cytotoxicity (ADCC) through different types of human Fc gamma receptor. Mol Immunol 29(5):633–9.

    PubMed  CAS  Google Scholar 

  • Scallon BJ, McCarthy S, Radewonuk J, Cai A, Naso M, Raju TS, Capocasale R. 2007a. Quantitative in vivo comparisons of the Fc gamma receptor-dependent agonist activities of different fucosylation variants of an immunoglobulin G antibody. Int Immunopharmacol 7(6):761–72.

    PubMed  CAS  Google Scholar 

  • Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS. 2007b. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 44(7):1524–34.

    PubMed  CAS  Google Scholar 

  • Schachter H. 1986. Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Adv Exp Med Biol 205:53–85.

    PubMed  CAS  Google Scholar 

  • Schahs M, Strasser R, Stadlmann J, Kunert R, Rademacher T, Steinkellner H. 2007. Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol J 5(5):657–63.

    PubMed  Google Scholar 

  • Schellekens H. 2009. Biosimilar therapeutics-what do we need to consider? NDT Plus 2(Suppl 1):i27–i36.

    PubMed  CAS  Google Scholar 

  • Schillberg S, Fischer R, Emans N. 2003. Molecular farming of recombinant antibodies in plants. Cell Mol Life Sci 60:433–45.

    PubMed  CAS  Google Scholar 

  • Schmelzer AE, Miller WM. 2002. Hyperosmotic stress and elevated pCO2 alter monoclonal antibody charge distribution and monosaccharide content. Biotechnol Prog 18(2):346–53.

    PubMed  CAS  Google Scholar 

  • Serrato JA, Hernandez V, Estrada-Mondaca S, Palomares LA, Ramirez OT. 2007. Differences in the glycosylation profile of a monoclonal antibody produced by hybridomas cultured in serum-supplemented, serum-free or chemically defined media. Biotechnol Appl Biochem 47(Pt 2):113–24.

    PubMed  CAS  Google Scholar 

  • Sheeley DM, Merrill BM, Taylor LC. 1997. Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alpha-linked galactose. Anal Biochem 247(1):102–10.

    PubMed  CAS  Google Scholar 

  • Shen X, Hu GB, Jiang SJ, He FR, Xing W, Li L, Yang J, Zhu HF, Lei P, Shen GX. 2009. Engineering and characterization of a baculovirus-expressed mouse/human chimeric antibody against transferrin receptor. Protein Eng Des Sel 22(12):723–31.

    PubMed  CAS  Google Scholar 

  • Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG. 2002. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277(30):26733–40.

    PubMed  CAS  Google Scholar 

  • Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, et al. 2003. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278(5):3466–73.

    PubMed  CAS  Google Scholar 

  • Siberil S, de Romeuf C, Bihoreau N, Fernandez N, Meterreau JL, Regenman A, Nony E, Gaucher C, Glacet A, Jorieux S, et al. 2006. Selection of a human anti-RhD monoclonal antibody for therapeutic use: impact of IgG glycosylation on activating and inhibitory Fc gamma R functions. Clin Immunol 118(2–3):170–9.

    PubMed  CAS  Google Scholar 

  • Siberil S, Elluru S, Negi VS, Ephrem A, Misra N, Delignat S, Bayary J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. 2007. Intravenous immunoglobulin in autoimmune and inflammatory diseases: more than mere transfer of antibodies. Transfus Apher Sci 37(1):103–7.

    PubMed  Google Scholar 

  • Siemiatkoski J, Lyubarskaya Y, Houde D, Tep S, Mhatre R. 2006. A comparison of three techniques for quantitative carbohydrate analysis used in characterization of therapeutic antibodies. Carbohydr Res 341:410–19.

    PubMed  CAS  Google Scholar 

  • Sinha S, Pipes G, Topp EM, Bondarenko PV, Treuheit MJ, Gadgil HS. 2008. Comparison of LC and LC/MS methods for quantifying N-glycosylation in recombinant IgGs. J Am Soc Mass Spectrom 19(11):1643–54.

    PubMed  CAS  Google Scholar 

  • Sondermann P, Huber R, Oosthuizen V, Jacob U. 2000. The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex. Nature 406(6793):267–73.

    PubMed  CAS  Google Scholar 

  • Song M, Park DY, Kim Y, Lee KJ, Lu Z, Ko K, Choo YK, Han YS, Ahn MH, Oh DB. 2010. Characterization of N-glycan structures and biofunction of anti-colorectal cancer monoclonal antibody CO17-1A produced in baculovirus-insect cell expression system. J Biosci Bioeng 110(2):135–40.

    PubMed  CAS  Google Scholar 

  • Srebalus Barnes CA, Lim A. 2007. Applications of mass spectrometry for the structural characterization of recombinant protein pharmaceuticals. Mass Spectrom Rev 26(3):370–88.

    PubMed  Google Scholar 

  • Sriraman R, Bardor M, Sack M, Vaquero C, Faye L, Fischer R, Finnern R, Lerouge P. 2004. Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core-alpha(1,3)-fucose residues. Plant Biotechnol J 2(4):279–87.

    PubMed  CAS  Google Scholar 

  • Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F. 2008. Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8:2858–71.

    PubMed  CAS  Google Scholar 

  • Stadlmann J, Weber A, Pabst M, Anderle H, Kunert R, Ehrlich HJ, Peter Schwarz H, Altmann F. 2009. A close look at human IgG sialylation and subclass distribution after lectin fractionation. Proteomics 9(17):4143–53.

    PubMed  CAS  Google Scholar 

  • Stanley P, Schachter H, Taniguchi N. 2009. Chapter 8. Essentials of Glycobiology. 2nd edition. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Stork R, Zettlitz KA, Muller D, Rether M, Hanisch FG, Kontermann RE. 2008. N-glycosylation as novel strategy to improve pharmacokinetic properties of bispecific single-chain diabodies. J Biol Chem 283(12):7804–12.

    PubMed  CAS  Google Scholar 

  • Strasser R, Stadlmann J, Schahs M, Stiegler G, Quendler H, Mach L, Glossl J, Weterings K, Pabst M, Steinkellner H. 2008. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6(4):392–402.

    PubMed  CAS  Google Scholar 

  • Takahashi M, Kuroki Y, Ohtsubo K, Taniguchi N. 2009. Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydr Res 344(12):1387–90.

    PubMed  CAS  Google Scholar 

  • Takegawa Y, Deguchi K, Nakagawa H, Nishimura S. 2005. Structural analysis of an N-glycan with “beta1-4 bisecting branch” from human serum IgG by negative-ion MSn spectral matching and exoglycosidase digestion. Anal Chem 77(18):6062–8.

    PubMed  CAS  Google Scholar 

  • Tao MH, Morrison SL. 1989. Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J Immunol 143(8):2595–601.

    PubMed  CAS  Google Scholar 

  • Taylor RJ, Chan SL, Wood A, Voskens CJ, Wolf JS, Lin W, Chapoval A, Schulze DH, Tian G, Strome SE. 2009. FcgammaRIIIa polymorphisms and cetuximab induced cytotoxicity in squamous cell carcinoma of the head and neck. Cancer Immunol Immunother 58(7):997–1006.

    PubMed  CAS  Google Scholar 

  • Tekoah Y, Ko K, Koprowski H, Harvey DJ, Wormald MR, Dwek RA, Rudd PM. 2004. Controlled glycosylation of therapeutic antibodies in plants. Arch Biochem Biophys 426(2):266–78.

    PubMed  CAS  Google Scholar 

  • Thobhani S, Yuen CT, Bailey MJ, Jones C. 2009. Identification and quantification of N-linked oligosaccharides released from glycoproteins: an inter-laboratory study. Glycobiology 19(3):201–11.

    PubMed  CAS  Google Scholar 

  • Thomas P, Smart TG. 2005. HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51(3):187–200.

    PubMed  CAS  Google Scholar 

  • Tomiya N, Narang S, Lee YC, Betenbaugh MJ. 2004. Comparing N-glycan processing in mammalian cell lines to native and engineered lepidopteran insect cell lines. Glycoconj J 21(6):343–60.

    PubMed  CAS  Google Scholar 

  • Tornoe I, Titlestad IL, Kejling K, Erb K, Ditzel HJ, Jensenius JC. 1997. Pilot scale purification of human monoclonal IgM (COU-1) for clinical trials. J Immunol Methods 205(1):11–17.

    PubMed  CAS  Google Scholar 

  • Triguero A, Cabrera G, Cremata JA, Yuen CT, Wheeler J, Ramirez NI. 2005. Plant-derived mouse IgG monoclonal antibody fused to KDEL endoplasmic reticulum-retention signal is N-glycosylated homogeneously throughout the plant with mostly high-mannose-type N-glycans. Plant Biotechnol J 3(4):449–57.

    PubMed  CAS  Google Scholar 

  • Tsuchiya N, Endo T, Matsuta K, Yoshinoya S, Aikawa T, Kosuge E, Takeuchi F, Miyamoto T, Kobata A. 1989. Effects of galactose depletion from oligosaccharide chains on immunological activities of human IgG. J Rheumatol 16(3):285–90.

    PubMed  CAS  Google Scholar 

  • Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE. 1999. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–80.

    PubMed  CAS  Google Scholar 

  • Valliere-Douglass JF, Eakin CM, Wallace A, Ketchem RR, Wang W, Treuheit MJ, Balland A. 2010. Glutamine-linked and non-consensus asparagine-linked oligosaccharides present in human recombinant antibodies define novel protein glycosylation motifs. J Biol Chem 285(21):16012–22.

    PubMed  CAS  Google Scholar 

  • Valliere-Douglass JF, Kodama P, Mujacic M, Brady LJ, Wang W, Wallace A, Yan B, Reddy P, Treuheit MJ, Balland A. 2009. Asparagine-linked oligosaccharides present on a non-consensus amino acid sequence in the CH1 domain of human antibodies. J Biol Chem 284(47):32493–506.

    PubMed  CAS  Google Scholar 

  • van Berkel PH, Gerritsen J, Perdok G, Valbjorn J, Vink T, van de Winkel JG, Parren PW. 2009. N-linked glycosylation is an important parameter for optimal selection of cell lines producing biopharmaceutical human IgG. Biotechnol Prog 25(1):244–51.

    PubMed  Google Scholar 

  • van Berkel PH, Gerritsen J, van Voskuilen E, Perdok G, Vink T, van de Winkel JG, Parren PW. 2010. Rapid production of recombinant human IgG With improved ADCC effector function in a transient expression system. Biotechnol Bioeng 105(2):350–7.

    PubMed  Google Scholar 

  • Vezina LP, Faye L, Lerouge P, D’Aoust MA, Marquet-Blouin E, Burel C, Lavoie PO, Bardor M, Gomord V. 2009. Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol J 7(5):442–55.

    PubMed  CAS  Google Scholar 

  • Wada Y, Azadi P, Costello CE, Dell A, Dwek RA, Geyer H, Geyer R, Kakehi K, Karlsson NG, Kato K, et al. 2007. Comparison of the methods for profiling glycoprotein glycans – HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology 17(4):411–22.

    PubMed  CAS  Google Scholar 

  • Wallick SC, Kabat EA, Morrison SL. 1988. Glycosylation of a VH residue of a monoclonal antibody against alpha (1–6) dextran increases its affinity for antigen. J Exp Med 168(3):1099–109.

    PubMed  CAS  Google Scholar 

  • Walsh G. 2010. Biopharmaceutical benchmarks 2010. Nat Biotechnol 28(9):917–24.

    PubMed  CAS  Google Scholar 

  • Ward M, Lin C, Victoria DC, Fox BP, Fox JA, Wong DL, Meerman HJ, Pucci JP, Fong RB, Heng MH, et al. 2004. Characterization of humanized antibodies secreted by Aspergillus niger. Appl Environ Microbiol 70(5):2567–76.

    PubMed  CAS  Google Scholar 

  • Warnock D, Bai X, Autote K, Gonzales J, Kinealy K, Yan B, Qian J, Stevenson T, Zopf D, Bayer RJ. 2005. In vitro galactosylation of human IgG at 1 kg scale using recombinant galactosyltransferase. Biotechnol Bioeng 92(7):831–42.

    PubMed  CAS  Google Scholar 

  • Wei Y, Li C, Huang W, Li B, Strome S, Wang LX. 2008. Glycoengineering of human IgG1-Fc through combined yeast expression and in vitro chemoenzymatic glycosylation. Biochemistry 47(39):10294–304.

    PubMed  CAS  Google Scholar 

  • Weng WK, Levy R. 2003. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21(21):3940–7.

    PubMed  CAS  Google Scholar 

  • Wright A, Morrison SL. 1994. Effect of altered CH2-associated carbohydrate structure on the functional properties and in vivo fate of chimeric mouse-human immunoglobulin G1. J Exp Med 180(3):1087–96.

    PubMed  CAS  Google Scholar 

  • Wright A, Morrison SL. 1998. Effect of C2-associated carbohydrate structure on Ig effector function: studies with chimeric mouse-human IgG1 antibodies in glycosylation mutants of Chinese hamster ovary cells. J Immunol 160(7):3393–402.

    PubMed  CAS  Google Scholar 

  • Wright A, Sato Y, Okada T, Chang K, Endo T, Morrison S. 2000. In vivo trafficking and catabolism of IgG1 antibodies with Fc associated carbohydrates of differing structure. Glycobiology 10(12):1347–55.

    PubMed  CAS  Google Scholar 

  • Wright A, Tao MH, Kabat EA, Morrison SL. 1991. Antibody variable region glycosylation: position effects on antigen binding and carbohydrate structure. EMBO J 10(10):2717–23.

    PubMed  CAS  Google Scholar 

  • Wu S, Luo J, O’Neil K, Kang J, Lacy ER, Canziani G, Baker A, Huang M, Tang Q, Raju TS, et al. 2010. Structure-based engineering of a monoclonal antibody for improved solubility. Protein Eng Des Sel 23(8):643–651.

    PubMed  CAS  Google Scholar 

  • Wuhrer M, Stam JC, van de Geijn FE, Koeleman CA, Verrips CT, Dolhain RJ, Hokke CH, Deelder AM. 2007. Glycosylation profiling of immunoglobulin G (IgG) subclasses from human serum. Proteomics 7(22):4070–81.

    PubMed  CAS  Google Scholar 

  • Yamada E, Tsukamoto Y, Sasaki R, Yagyu K, Takahashi N. 1997. Structural changes of immunoglobulin G oligosaccharides with age in healthy human serum. Glycoconj J 14(3):401–5.

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Nishimura M, Nagano M, Yagi H, Sasakawa H, Uchida K, Shitara K, Kato K. 2006. Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochim Biophys Acta 1760(4):693–700.

    PubMed  CAS  Google Scholar 

  • Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, et al. 2004. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87(5):614–22.

    PubMed  CAS  Google Scholar 

  • Yamane-Ohnuki N, Satoh M. 2009. Production of therapeutic antibodies with controlled fucosylation. MAbs 1(3):230–6.

    PubMed  Google Scholar 

  • Yang M, Butler M. 2000. Effect of ammonia on the glycosylation of human recombinant erythropoietin in culture. Biotechnol Prog 16(5):751–9.

    PubMed  CAS  Google Scholar 

  • Ye J, Kober V, Tellers M, Naji Z, Salmon P, Markusen JF. 2009. High-level protein expression in scalable CHO transient transfection. Biotechnol Bioeng 103(3):542–51.

    PubMed  CAS  Google Scholar 

  • Zhao J, Kuroki M, Shibaguchi H, Wang L, Huo Q, Takami N, Tanaka T, Kinugasa T. 2008. Recombinant human monoclonal igA antibody against CEA to recruit neutrophils to CEA-expressing cells. Oncol Res 17(5):217–22.

    PubMed  Google Scholar 

  • Zhou Q, Shankara S, Roy A, Qiu H, Estes S, McVie-Wylie A, Culm-Merdek K, Park A, Pan C, Edmunds T. 2008. Development of a simple and rapid method for producing non-fucosylated oligomannose containing antibodies with increased effector function. Biotechnol Bioeng 99(3):652–65.

    PubMed  CAS  Google Scholar 

  • Zhu D, McCarthy H, Ottensmeier CH, Johnson P, Hamblin TJ, Stevenson FK. 2002. Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood 99(7):2562–8.

    PubMed  CAS  Google Scholar 

  • Zhu L, van de Lavoir MC, Albanese J, Beenhouwer DO, Cardarelli PM, Cuison S, Deng DF, Deshpande S, Diamond JH, Green L, et al. 2005. Production of human monoclonal antibody in eggs of chimeric chickens. Nat Biotechnol 23(9):1159–69.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Erika Lattova for her comments on the manuscript. We acknowledge the Natural Science and Engineering Council (NSERC) of Canada for funding our activities in protein glycosylation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Butler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Spearman, M., Dionne, B., Butler, M. (2011). The Role of Glycosylation in Therapeutic Antibodies. In: Al-Rubeai, M. (eds) Antibody Expression and Production. Cell Engineering, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1257-7_12

Download citation

Publish with us

Policies and ethics