Skip to main content

Modelling bone tissue engineering. Towards an understanding of the role of scaffold design parameters

  • Chapter
  • First Online:
Advances on Modeling in Tissue Engineering

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 20))

Abstract

Tissue engineering emerged in the beginning of 90’s as a new paradigm in medicine and life sciences. A number of successful results have been reported although the clinical practice has not been reached so far. One of the problems encountered in this methodology is the coordination among the different biophysical fields involved and the uncertain behaviour of a specific cell carrier, i.e, scaffolds in each application. Moreover, the role of the scaffold design in tissue regeneration is poorly understood and new protocols have to be tested over different tissues. In order to advance in the knowledge of the scaffold behaviour towards its functionality and to reduce animal experimentation, computer simulation may serve as a useful platform for scaffold design, once the models are sufficiently validated. In this framework, the potential of numerical simulation, based on a multiscale and multiphysic approach, is highlighted in this work. Furthermore, the role of scaffold microstructural anisotropy in bone tissue regeneration is analyzed using this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA (1997) Transplantation of chondrocites utilizing a polymercell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 100:297–304.

    Article  Google Scholar 

  2. Kelly DJ, Prendergast PJ (2006) Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng 12:2509–2519.

    Article  Google Scholar 

  3. Kulig KM, Vacanti JP (2004) Hepatic tissue engineering. Transpl Immunol 12:303–310.

    Article  Google Scholar 

  4. Ko HCH,Milthorpe BK,McFarland CD (2007) Engineering thick tissues–the vascularisation problem. Eur Cell Mater 14:1–18.

    Google Scholar 

  5. Langer R (2007) Tissue engineering: Perspectives, challenges, and future directions. Tissue Eng 13:1–2.

    Article  Google Scholar 

  6. Shieh SJ, Vacanti JP (2005) State-of-the-art tissue engineering: From tissue engineering to organ building. Surgery 137:1–7.

    Article  Google Scholar 

  7. Richardson TP, PetersMC, Ennett AB,Mooney DJ (2001a) Polymeric system for dual growth factor delivery. Nat Biotechnol 19:1029–1034.

    Article  Google Scholar 

  8. Borenstein JT, Terai H, King KR, Weinberg EJ, Kaazempur-Mofrad MR, Vacanti JP (2002) Microfabrication technology for vascularized tissue engineering. Biomed Microdevices 4:167–175.

    Article  Google Scholar 

  9. Warnke PH, Springer ING, Wiltfang J, Acil Y, Eufinger H, Wehm¨oller M, Russo PAJ, Bolte H, Sherry E, Behrens E, Terheyden H (2004) Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364:766–770.

    Article  Google Scholar 

  10. Cioffi M, Kuffer J, Strobel S, Dubini G, Martin I, Wendt D (2008) Computational evaluation of oxygen and shear stress distributions in 3D perfusion culture systems: Macro-scale and micro-structured models. Biomaterials 41:2918–2925.

    Google Scholar 

  11. Sanz-Herrera JA, Kasper C, van GriensvenM, Garc´ıa-Aznar JM, Ochoa I, Doblar´eM(2008a) Mechanical and flow characterization of SponceramR carriers: evaluation by homogenization theory and experimental validation. J Biomed Mater Res B 87:42–48.

    Google Scholar 

  12. Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103.

    Article  Google Scholar 

  13. Lin CY, Kikuchi N, Hollister SJ (2004) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 37:623–636.

    Article  Google Scholar 

  14. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ (2003) Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194.

    Article  Google Scholar 

  15. Gutierres M, Lopes MA, Hussain NS, Lemos AF, Ferreira JMF, Afonso A, Cabral AT, Almeida L, Santos JD (2008) Bone ingrowth in macroporous Bonelike for orthopaedic applications. Acta Biomater 4:370–377.

    Article  Google Scholar 

  16. Sanz-Herrera JA, Garc´ıa-Aznar JM, Doblar´e M (2009a) On scaffold designing for bone regeneration: A computational multiscale approach. Acta Biomater 5:219–229.

    Article  Google Scholar 

  17. Sanz-Herrera JA, Garc´ıa-Aznar JM, Doblar´e M (2009b) A mathematical approach to bone tissue engineering. Philos Transact A Math Phys Eng Sci 367:2055–2078.

    Article  MATH  Google Scholar 

  18. Rajangam K, Behanna HA, Hui MJ, Han X, Hulvat JF, Lomasney JW, Stupp SI (2006) Heparin Binding Nanostructures to Promote Growth of Blood Vessels. Nano Letters 6:2086–2090.

    Article  Google Scholar 

  19. Langer R (2006) Biomaterials for drug delivery and tissue engineering. MRS Bull 31:477–485.

    Article  Google Scholar 

  20. Adachi T, Osako Y, Tanaka M, Hojo M, Hollister SJ (2006) Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27:3964–3972.

    Article  Google Scholar 

  21. Wang Y, Pan J, Han X, Sinka C, Ding L (2008) A phenomenological model for the degradation of biodegradable polymers. Biomaterials 29:3393–3401.

    Article  Google Scholar 

  22. Fauza DO (2003) Tissue engineering: Current state of clinical application. Curr Opin Pediatr 15:267–271.

    Article  Google Scholar 

  23. MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445:874–880.

    Article  Google Scholar 

  24. Curtis A, Riehle M (2001) Tissue engineering: the biophysical background. Phys Med Biol 46:R47–R65.

    Article  Google Scholar 

  25. Okuda T, Ioku K, Yonezawa I, Minagi H, Kawachi G, Gonda Y, Murayama H, Shibata Y, Minami S, Kamihira S, Kurosawa H, Ikeda T (2007) The effect of microstructure of -tricalcium phosphate on the metabolism of subsequently formed bone tissue. Biomaterials 28:2612–

    Google Scholar 

  26. 2621.

    Google Scholar 

  27. Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138.

    Article  Google Scholar 

  28. Sanz-Herrera JA, Garc´ıa-Aznar JM, Doblar´e M (2008b) Micromacro numerical modelling of bone regeneration in tissue engineering. Comput Meth Appl M 197:3092–3107.

    Article  MATH  Google Scholar 

  29. Einhorn TA, Majeska RJ, Rush EB, Levine PM, Horrowitz MC (1995) The expression of cytokine activity by fracture callus. J Bone Miner Res 10:1272–1281.

    Article  Google Scholar 

  30. Beaupré GS, Orr TE, Carter DR (1990) An approach for time-dependent bone modelling and remodelling: theoretical development. J Orthop Res 8:651–661.

    Article  Google Scholar 

  31. Doblar´e M, Garc´ıa JM (2001) Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement. J Biomech 34:1157–1170.

    Article  Google Scholar 

  32. Doblar´e M, Garcia JM (2002) Anisotropic bone remodelling model based on a continuum damage-repair theory. J Biomech 35:1–17.

    Article  Google Scholar 

  33. Turner CH, Forwood MR, Rho J, Yoshikawa T (1994) Mechanical loading thresolds for lamellar and woven bone formation. J Bone Miner Res 9:87–97.

    Article  Google Scholar 

  34. Tang L, Lin Z, Yong-Ming L (2006) Effects of different magnitudes of mechanical strain on osteoblasts in vitro. Biochem Biophys Res Comm 344:122–128.

    Article  Google Scholar 

  35. Gopferich A (1997) Polymer bulk erosion. Macromolecules 30:2598–2604.

    Article  Google Scholar 

  36. Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analyses of heterogeneous media. Comput Meth Appl M 190:5427–5464.

    Article  MathSciNet  MATH  Google Scholar 

  37. Hibbit, Karlsson, Sorensen. Abaqus user’s manual v.6.2. HKS Inc. Pawtucket, RI 2001.

    Google Scholar 

  38. Lin AS, Barrows TH, Cartmell SH, Guldberg RE (2003) Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials 24:481–489.

    Article  Google Scholar 

  39. Mathieu LM, Mueller TL, Bourban PE, Pioletti DP, Muller R, Manson JAE (2006) Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27:905–916.

    Article  Google Scholar 

  40. Br´ıgido-Diego R, M´as-Estell´es J, Sanz JA, Garc´ıa-Aznar JM, Salmer´on-S´anchez M (2007) Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering. Fabrication, mechanical properties and finite element modeling. J BiomedMater Res B 81B:448–455.

    Google Scholar 

  41. Savarino L, Baldini N, Greco M, Capitani O, Pinna S, Valentini S, et al. (2007) The performance of poly-ε -caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4. Biomaterials 28:3101–3109.

    Article  Google Scholar 

  42. Mimics Materialise. Mimics Materialise NV v10.0, 2006.

    Google Scholar 

  43. Harpoon Lt. Manchester: Sharc UK, 2006.

    Google Scholar 

  44. Gushue DL, Houck J, Lerner AM (2005) Rabbit knee joint biomechanics: motion analysis and modeling of forces during hopping. J Orthopaed Res 23:735–742.

    Article  Google Scholar 

  45. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543.

    Article  Google Scholar 

  46. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491.

    Article  Google Scholar 

  47. Tsuruga E, Takita H, Itoh H,Wakisaka Y, Kuboki Y (1997) Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem (Tokyo) 12:317–324.

    Google Scholar 

  48. Kuboki Y, Jin Q, Takita H (2001) Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am 83A:S105-S115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Sanz-Herrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media

About this chapter

Cite this chapter

Sanz-Herrera, J.A., Doblaré, M., García-Aznar, J.M. (2011). Modelling bone tissue engineering. Towards an understanding of the role of scaffold design parameters. In: Fernandes, P., Bártolo, P. (eds) Advances on Modeling in Tissue Engineering. Computational Methods in Applied Sciences, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1254-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1254-6_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1253-9

  • Online ISBN: 978-94-007-1254-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics