Skip to main content

Approaches to Achieving Sub-cellular Targeting of Bioactives Using Pharmaceutical Nanocarriers

  • Chapter
  • First Online:

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 5))

Abstract

It is well accepted that the ability of a biologically molecule to selectively find its target influences its potential as a successful therapeutic drug. For many molecules the molecular target is located inside sub-cellular structures. Molecules with such sub cellular targets and the inability to specifically accumulate at the location of the target can potentially be made more active by targeting strategies that improve their accumulation at the target. Pharmaceutical nanocarriers form the basis of several such targeting strategies. This chapter deals with the rational approach underlying the current uses of nanocarriers to deliver bioactive molecules to sub cellular compartments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akita, H., et al., Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process. Biomaterials, 2009. 30(15): p. 2940–9.

    PubMed  CAS  Google Scholar 

  • Allen, T.D., et al., The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. J Cell Sci, 2000. 113 (Pt 10): p. 1651–9.

    PubMed  CAS  Google Scholar 

  • Bae, Y., et al., Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem, 2005. 16(1): p. 122–30.

    PubMed  CAS  Google Scholar 

  • Bareford, L.M. and P.W. Swaan, Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev, 2007. 59(8): p. 748–58.

    PubMed  CAS  Google Scholar 

  • Boddapati, S.V., et al., Mitochondriotropic liposomes. J Liposome Res, 2005. 15(1–2): p. 49–58.

    PubMed  CAS  Google Scholar 

  • Boddapati, S.V., et al., Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett, 2008. 8(8): p. 2559–63.

    PubMed  CAS  Google Scholar 

  • Boussif, O., et al., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A, 1995. 92(16): p. 7297–301.

    PubMed  CAS  Google Scholar 

  • Breunig, M., S. Bauer, and A. Goepferich, Polymers and nanoparticles: intelligent tools for intracellular targeting? Eur J Pharm Biopharm, 2008. 68(1): p. 112–28.

    PubMed  CAS  Google Scholar 

  • Calzolari, A., et al., Transferrin receptor 2 is frequently expressed in human cancer cell lines. Blood Cells Mol Dis, 2007. 39(1): p. 82–91.

    PubMed  CAS  Google Scholar 

  • Castino, R., M. Demoz, and C. Isidoro, Destination ‘lysosome’: a target organelle for tumour cell killing? J Mol Recognit, 2003. 16(5): p. 337–48.

    PubMed  CAS  Google Scholar 

  • Cervetti, G., et al., Efficacy and toxicity of liposomal daunorubicin included in PVABEC regimen for aggressive NHL of the elderly. Leuk Lymphoma, 2003. 44(3): p. 465–9.

    PubMed  Google Scholar 

  • Costin, G.E., et al., pH-sensitive liposomes are efficient carriers for endoplasmic reticulum-targeted drugs in mouse melanoma cells. Biochem Biophys Res Commun, 2002. 293(3): p. 918–23.

    PubMed  CAS  Google Scholar 

  • Demeneix, B. and J.P. Behr, Polyethylenimine (PEI). Adv Genet, 2005. 53: p. 217–30.

    PubMed  CAS  Google Scholar 

  • D’Souza, G.G., et al., DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release, 2003. 92(1–2): p. 189–97.

    PubMed  Google Scholar 

  • D’Souza, G.G., S.V. Boddapati, and V. Weissig, Mitochondrial leader sequence--plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion, 2005. 5(5): p. 352–8.

    PubMed  Google Scholar 

  • D’Souza, G.G., et al., Nanocarrier-assisted sub-cellular targeting to the site of mitochondria improves the pro-apoptotic activity of paclitaxel. J Drug Target, 2008. 16(7): p. 578–85.

    PubMed  Google Scholar 

  • Dufes, C., et al., Anticancer drug delivery with transferrin targeted polymeric chitosan vesicles. Pharm Res, 2004. 21(1): p. 101–7.

    PubMed  CAS  Google Scholar 

  • Duvvuri, M. and J.P. Krise, Intracellular drug sequestration events associated with the emergence of multidrug resistance: a mechanistic review. Front Biosci, 2005. 10: p. 1499–509.

    PubMed  CAS  Google Scholar 

  • Dzau, V.J., et al., Fusigenic viral liposome for gene therapy in cardiovascular diseases. Proc Natl Acad Sci U S A, 1996. 93(21): p. 11421–5.

    PubMed  CAS  Google Scholar 

  • Eavarone, D.A., X. Yu, and R.V. Bellamkonda, Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J Biomed Mater Res, 2000. 51(1): p. 10–4.

    PubMed  CAS  Google Scholar 

  • Ellis, R.J. and A.P. Minton, Cell biology: join the crowd. Nature, 2003. 425(6953): p. 27–8.

    PubMed  CAS  Google Scholar 

  • Ellouze, S., et al., Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. Am J Hum Genet, 2008. 83(3): p. 373–87.

    PubMed  CAS  Google Scholar 

  • Fang, J., T. Sawa, and H. Maeda, Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv Exp Med Biol, 2003. 519: p. 29–49.

    PubMed  CAS  Google Scholar 

  • Fawell, S., et al., Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A, 1994. 91(2): p. 664–8.

    PubMed  CAS  Google Scholar 

  • Fernandez-Carneado, J., et al., Highly efficient, nonpeptidic oligoguanidinium vectors that selectively internalize into mitochondria. J Am Chem Soc, 2005. 127(3): p. 869–74.

    PubMed  CAS  Google Scholar 

  • Fittipaldi, A. and M. Giacca, Transcellular protein transduction using the Tat protein of HIV-1. Adv Drug Deliv Rev, 2005. 57(4): p. 597–608.

    PubMed  CAS  Google Scholar 

  • Gabizon, A., et al., Systemic administration of doxorubicin-containing liposomes in cancer patients: a phase I study. Eur J Cancer Clin Oncol, 1989. 25(12): p. 1795–803.

    PubMed  CAS  Google Scholar 

  • Gabizon, A., R. Shiota, and D. Papahadjopoulos, Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times. J Natl Cancer Inst, 1989. 81(19): p. 1484–8.

    PubMed  CAS  Google Scholar 

  • Gill, P.S., et al., Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. J Clin Oncol, 1996. 14(8): p. 2353–64.

    PubMed  CAS  Google Scholar 

  • Glickson, J.D., et al., Lipoprotein nanoplatform for targeted delivery of diagnostic and therapeutic agents. Mol Imaging, 2008. 7(2): p. 101–10.

    PubMed  CAS  Google Scholar 

  • Glickson, J.D., et al., Lipoprotein nanoplatform for targeted delivery of diagnostic and therapeutic agents. Adv Exp Med Biol, 2009. 645: p. 227–39.

    PubMed  CAS  Google Scholar 

  • Goins, A.B., H. Sanabria, and M.N. Waxham, Macromolecular crowding and size effects on probe microviscosity. Biophys J, 2008. 95(11): p. 5362–73.

    PubMed  CAS  Google Scholar 

  • Gray, R.E., et al., Allotopic expression of mitochondrial ATP synthase genes in nucleus of Saccharomyces cerevisiae. Methods Enzymol, 1996. 264: p. 369–89.

    PubMed  CAS  Google Scholar 

  • Gregoriadis, G. and B.E. Ryman, Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem J, 1971. 124(5): p. 58P.

    PubMed  CAS  Google Scholar 

  • Greish, K., Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol, 2010. 624: p. 25–37.

    Google Scholar 

  • Hansen, J.S., et al., Acyl-CoA-binding protein (ACBP) localizes to the endoplasmic reticulum and Golgi in a ligand-dependent manner in mammalian cells. Biochem J, 2008. 410(3): p. 463–72.

    PubMed  CAS  Google Scholar 

  • Horobin, R.W., S. Trapp, and V. Weissig, Mitochondriotropics: a review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J Control Release, 2007. 121(3): p. 125–36.

    PubMed  CAS  Google Scholar 

  • Hoshino, A., et al., Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol, 2004. 48(12): p. 985–94.

    PubMed  CAS  Google Scholar 

  • Inoki, Y., et al., Proteoliposomes colocalized with endogenous mitochondria in mouse fertilized egg. Biochem Biophys Res Commun, 2000. 278(1): p. 183–91.

    PubMed  CAS  Google Scholar 

  • Ju-Nam, Y., et al., Phosphonioalkylthiosulfate zwitterions--new masked thiol ligands for the ­formation of cationic functionalised gold nanoparticles. Org Biomol Chem, 2006. 4(23): p. 4345–51.

    PubMed  Google Scholar 

  • Kaufmann, A.M. and J.P. Krise, Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci, 2007. 96(4): p. 729–46.

    PubMed  CAS  Google Scholar 

  • Kievit, F.M., et al., Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano, 2010. 4(8): p. 4587–94.

    Google Scholar 

  • Le, P.U. and I.R. Nabi, Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum. J Cell Sci, 2003. 116(Pt 6): p. 1059–71.

    PubMed  CAS  Google Scholar 

  • Lee, M., et al., DNA delivery to the mitochondria sites using mitochondrial leader peptide conjugated polyethylenimine. J Drug Target, 2007. 15(2): p. 115–22.

    PubMed  CAS  Google Scholar 

  • Li, S.D. and L. Huang, Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm, 2008. 5(4): p. 496–504.

    PubMed  CAS  Google Scholar 

  • Liberman, E.A., et al., Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature, 1969. 222(5198): p. 1076–8.

    PubMed  CAS  Google Scholar 

  • Maeda, H., et al., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release, 2000. 65(1–2): p. 271–84.

    PubMed  CAS  Google Scholar 

  • Martin, M.E. and K.G. Rice, Peptide-guided gene delivery. AAPS J, 2007. 9(1): p. E18–29.

    PubMed  CAS  Google Scholar 

  • Maysinger, D., et al., Fate of micelles and quantum dots in cells. Eur J Pharm Biopharm, 2007. 65(3): p. 270–81.

    PubMed  CAS  Google Scholar 

  • Minton, A.P., How can biochemical reactions within cells differ from those in test tubes? J Cell Sci, 2006. 119(Pt 14): p. 2863–9.

    PubMed  CAS  Google Scholar 

  • Muro, S., E.H. Schuchman, and V.R. Muzykantov, Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis. Mol Ther, 2006. 13(1): p. 135–41.

    PubMed  CAS  Google Scholar 

  • Muro, S., et al., Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther, 2008. 16(8): p. 1450–8.

    PubMed  CAS  Google Scholar 

  • Murphy, M.P., Targeting lipophilic cations to mitochondria. Biochim Biophys Acta, 2008. 1777(7–8): p. 1028–31.

    PubMed  CAS  Google Scholar 

  • Murphy, M.P. and R.A. Smith, Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol, 2007. 47: p. 629–56.

    PubMed  CAS  Google Scholar 

  • Northfelt, D.W., et al., Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J Clin Pharmacol, 1996. 36(1): p. 55–63.

    PubMed  CAS  Google Scholar 

  • Oca-Cossio, J., et al., Limitations of allotopic expression of mitochondrial genes in mammalian cells. Genetics, 2003. 165(2): p. 707–20.

    PubMed  CAS  Google Scholar 

  • Panyam, J. and V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev, 2003. 55(3): p. 329–47.

    PubMed  CAS  Google Scholar 

  • Patil, Y. and J. Panyam, Polymeric nanoparticles for siRNA delivery and gene silencing. Int J Pharm, 2009. 367(1–2): p. 195–203.

    PubMed  CAS  Google Scholar 

  • Pollock, S., et al., Uptake and trafficking of liposomes to the endoplasmic reticulum. FASEB J, 2010. 24(6): p. 1866–78.

    Google Scholar 

  • Qian, Z.M., et al., Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev, 2002. 54(4): p. 561–87.

    PubMed  CAS  Google Scholar 

  • Rajendran, L., et al., Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discovery, 2010. 9(1): p. 29–42.

    Google Scholar 

  • Ross, M.F., et al., Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells. Biochem J, 2008. 411(3): p. 633–45.

    PubMed  CAS  Google Scholar 

  • Rousselle, C., et al., New advances in the transport of doxorubicin through the blood-brain ­barrier by a peptide vector-mediated strategy. Mol Pharmacol, 2000. 57(4): p. 679–86.

    PubMed  CAS  Google Scholar 

  • Ruan, G., et al., Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc, 2007. 129(47): p. 14759–66.

    PubMed  CAS  Google Scholar 

  • Savic, R., et al., Micellar nanocontainers distribute to defined cytoplasmic organelles. Science, 2003. 300(5619): p. 615–8.

    PubMed  CAS  Google Scholar 

  • Savic, R., et al., Assessment of the integrity of poly(caprolactone)-b-poly(ethylene oxide) micelles under biological conditions: a fluorogenic-based approach. Langmuir, 2006. 22(8): p. 3570–8.

    PubMed  CAS  Google Scholar 

  • Savic, R., et al., Block-copolymer micelles as carriers of cell signaling modulators for the inhibition of JNK in human islets of Langerhans. Biomaterials, 2009.

    Google Scholar 

  • Schwarze, S.R., et al., In vivo protein transduction: delivery of a biologically active protein into the mouse. Science, 1999. 285(5433): p. 1569–72.

    PubMed  CAS  Google Scholar 

  • Seibel, P., et al., Transfection of mitochondria: strategy towards a gene therapy of mitochondrial DNA diseases. Nucleic Acids Res, 1995. 23(1): p. 10–7.

    PubMed  CAS  Google Scholar 

  • Seksek, O., J. Biwersi, and A.S. Verkman, Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol, 1997. 138(1): p. 131–42.

    PubMed  CAS  Google Scholar 

  • Sharma, A., U.S. Sharma, and R.M. Straubinger, Paclitaxel-liposomes for intracavitary therapy of intraperitoneal P388 leukemia. Cancer Lett, 1996. 107(2): p. 265–72.

    PubMed  CAS  Google Scholar 

  • Sharma, A., et al., Activity of paclitaxel liposome formulations against human ovarian tumor xenografts. Int J Cancer, 1997. 71(1): p. 103–7.

    PubMed  CAS  Google Scholar 

  • Shiraishi, T. and P.E. Nielsen, Enhanced delivery of cell-penetrating peptide-peptide nucleic acid conjugates by endosomal disruption. Nat Protoc, 2006. 1(2): p. 633–6.

    PubMed  CAS  Google Scholar 

  • Smith, R.A., et al., Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A, 2003. 100(9): p. 5407–12.

    PubMed  CAS  Google Scholar 

  • Song, W.J., et al., Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery. Small, 2010. 6(2): 239–46.

    Google Scholar 

  • Stathopoulos, G.P.,Liposomal Cisplatin: a new cisplatin formulation. Anticancer Drugs, 2010. 21(8): p. 732–6.

    Google Scholar 

  • Stoffler, D., B. Fahrenkrog, and U. Aebi, The nuclear pore complex: from molecular architecture to functional dynamics. Curr Opin Cell Biol, 1999. 11(3): p. 391–401.

    PubMed  CAS  Google Scholar 

  • Stoorvogel, W., H.J. Geuze, and G.J. Strous, Sorting of endocytosed transferrin and asialoglycoprotein occurs immediately after internalization in HepG2 cells. J Cell Biol, 1987. 104(5): p. 1261–8.

    PubMed  CAS  Google Scholar 

  • Suh, J., et al., PEGylation of nanoparticles improves their cytoplasmic transport. Int J Nanomedicine, 2007. 2(4): p. 735–41.

    PubMed  CAS  Google Scholar 

  • Tahara, K., et al., Chitosan-modified poly(D,L-lactide-co-glycolide) nanospheres for improving siRNA delivery and gene-silencing effects. Eur J Pharm Biopharm, 2010. 74(3): p. 421–6.

    Google Scholar 

  • Tarrago-Trani, M.T. and B. Storrie, Alternate routes for drug delivery to the cell interior: pathways to the Golgi apparatus and endoplasmic reticulum. Adv Drug Deliv Rev, 2007. 59(8): p. 782–97.

    PubMed  CAS  Google Scholar 

  • Tate, B.A. and P.M. Mathews, Targeting the role of the endosome in the pathophysiology of Alzheimer’s disease: a strategy for treatment. Sci Aging Knowledge Environ, 2006. 2006(10): p. re2.

    PubMed  Google Scholar 

  • Tkachenko, A.G., et al., Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem, 2004. 15(3): p. 482–90.

    PubMed  CAS  Google Scholar 

  • Torchilin, V.P., Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng, 2006. 8: p. 343–75.

    PubMed  CAS  Google Scholar 

  • Torchilin, V.P., et al., TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A, 2001. 98(15): p. 8786–91.

    PubMed  CAS  Google Scholar 

  • Torchilin, V.P., Nanotechnology for Intracellular Delivery and Targeting, in Nanotechnology in Drug Delivery, M.M. de Villiers, G.S. Kwon, and P. Aramwit, Editors. 2009, Springer Publications: New York. p. 313–348.

    Google Scholar 

  • Trinder, D. and E. Baker, Transferrin receptor 2: a new molecule in iron metabolism. Int J Biochem Cell Biol, 2003. 35(3): p. 292–6.

    PubMed  CAS  Google Scholar 

  • Vaidya, B.P., R., Rai, S., Khatri, K., Goyal, A.K., Mishra, N., Vyas, S.P., Cell-selective mitochondrial targeting: A new approach for cancer therapy. Cancer Therapy, 2009. 7: p. 141–148.

    Google Scholar 

  • Vale, R.D., Intracellular transport using microtubule-based motors. Annu Rev Cell Biol, 1987. 3: p. 347–78.

    PubMed  CAS  Google Scholar 

  • Walter, P., et al., The protein translocation machinery of the endoplasmic reticulum. Philos Trans R Soc Lond B Biol Sci, 1982. 300(1099): p. 225–8.

    PubMed  CAS  Google Scholar 

  • Weissig, V., Mitochondrial-targeted drug and DNA delivery. Crit Rev Ther Drug Carrier Syst, 2003. 20(1): p. 1–62.

    PubMed  CAS  Google Scholar 

  • Weissig, V., Targeted drug delivery to mammalian mitochondria in living cells. Expert Opin Drug Deliv, 2005. 2(1): p. 89–102.

    PubMed  CAS  Google Scholar 

  • Weissig, V. and V.P. Torchilin, Mitochondriotropic cationic vesicles: a strategy towards mitochondrial gene therapy. Curr Pharm Biotechnol, 2000. 1(4): p. 325–46.

    PubMed  CAS  Google Scholar 

  • Weissig, V. and V.P. Torchilin, Towards mitochondrial gene therapy: DQAsomes as a strategy. J Drug Target, 2001. 9(1): p. 1–13.

    PubMed  CAS  Google Scholar 

  • Weissig, V. and V.P. Torchilin, Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv Drug Deliv Rev, 2001. 49(1–2): p. 127–49.

    PubMed  CAS  Google Scholar 

  • Weissig, V., C. Lizano, and V.P. Torchilin, Selective DNA release from DQAsome/DNA complexes at mitochondria-like membranes. Drug Deliv, 2000. 7(1): p. 1–5.

    PubMed  CAS  Google Scholar 

  • Weissig, V., G.G. D’Souza, and V.P. Torchilin, DQAsome/DNA complexes release DNA upon contact with isolated mouse liver mitochondria. J Control Release, 2001. 75(3): p. 401–8.

    PubMed  CAS  Google Scholar 

  • Weissig, V., S.M. Cheng, and G.G. D’Souza, Mitochondrial pharmaceutics. Mitochondrion, 2004. 3(4): p. 229–44.

    PubMed  CAS  Google Scholar 

  • Weissig, V., et al., Mitochondria-specific nanotechnology. Nanomed, 2007. 2(3): p. 275–85.

    CAS  Google Scholar 

  • Working, P.K., et al., Reduction of the cardiotoxicity of doxorubicin in rabbits and dogs by encapsulation in long-circulating, pegylated liposomes. J Pharmacol Exp Ther, 1999. 289(2): p. 1128–33.

    PubMed  CAS  Google Scholar 

  • Xie, W., et al., Nuclear targeted nanoprobe for single living cell detection by surface-enhanced Raman scattering. Bioconjug Chem, 2009. 20(4): p. 768–73.

    PubMed  CAS  Google Scholar 

  • Xiong, X.B., et al., Multifunctional polymeric micelles for enhanced intracellular delivery of doxorubicin to metastatic cancer cells. Pharm Res, 2008. 25(11): p. 2555–66.

    PubMed  CAS  Google Scholar 

  • Xu, Z.P., et al., Subcellular compartment targeting of layered double hydroxide nanoparticles. J Control Release, 2008. 130(1): p. 86–94.

    PubMed  CAS  Google Scholar 

  • Yamada, Y. and H. Harashima, Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Adv Drug Deliv Rev, 2008. 60(13–14): p. 1439–62.

    PubMed  CAS  Google Scholar 

  • Yamada, Y., et al., MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta, 2008. 1778(2): p. 423–32.

    PubMed  CAS  Google Scholar 

  • Yang, T., et al., Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm, 2007. 338(1–2): p. 317–26.

    PubMed  CAS  Google Scholar 

  • Yessine, M.A. and J.C. Leroux, Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules. Adv Drug Deliv Rev, 2004. 56(7): p. 999–1021.

    PubMed  CAS  Google Scholar 

  • Yuan, X., et al., SiRNA drug delivery by biodegradable polymeric nanoparticles. J Nanosci Nanotechnol, 2006. 6(9–10): p. 2821–8.

    PubMed  CAS  Google Scholar 

  • Zanta, M.A., P. Belguise-Valladier, and J.P. Behr, Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA, 1999. 96(1): p. 91–6.

    PubMed  CAS  Google Scholar 

  • Zheng, G., et al., Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target-specific photosensitizer. Bioconjug Chem, 2002. 13(3): p. 392–6.

    PubMed  CAS  Google Scholar 

  • Zheng, G., et al., Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents. Proc Natl Acad Sci USA, 2005. 102(49): p. 17757–62.

    PubMed  CAS  Google Scholar 

  • Zullo, S.J., Gene therapy of mitochondrial DNA mutations: a brief, biased history of allotopic expression in mammalian cells. Semin Neurol, 2001. 21(3): p. 327–35.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard G. M. D’Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Solomon, M., D’Souza, G.G.M. (2011). Approaches to Achieving Sub-cellular Targeting of Bioactives Using Pharmaceutical Nanocarriers. In: Prokop, A. (eds) Intracellular Delivery. Fundamental Biomedical Technologies, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1248-5_2

Download citation

Publish with us

Policies and ethics