Skip to main content

Nanocrystals: Production, Cellular Drug Delivery, Current and Future Products

  • Chapter
  • First Online:

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 5))

Abstract

Drug nanocrystals are a formulation principle for systemic and also intracellular delivery of poorly soluble drugs. Their production by bottom up tech­iques (precipitation – hydrosols, Nanomorph) and by top down techniques (bead milling – NanoCrystal®, high pressure homogenization – DissoCubes®, NANOEDGE®) is briefly described, representing the first generation of nano­crystals. The second generation, the smartCrystal®, is produced by combination processes. They are featured by e.g. increased physical stability and/or smaller sizes (<100 nm), favourable when exposed to the destabilizing electrolytes in biological fluids and for uptake by cells by pinocytosis. The lab scale processes were successfully transferred to industrial scale by using discontinuous bead mills and high capacity homogenizers (top down), precipitation can be performed by static blenders. According to the nanotoxicological classification system (NCS), the nanocrystals belong to class I, being highly tolerable. They can be produced using only regulatorily accepted excipients. Both ease the way to the patient and market. Nanotoxicity studies confirm the good tolerability. The nanocrystal products on the market are no direct intracellular delivery systems. They transport drug to the biological barrier and then promote penetration and permeation of drugs in mole­cular form through barriers and cellular membranes (cellular delivery mechanism I). Formulations based on the cellular uptake of nanocrystals are still in development (cellular delivery mechanism II). Examples are i.v. targeting to endothelial cells of the blood-brain barrier and the loading of blood cells (monocytes, erythrocytes) to use these cells as transport vehicles for the nanocrystals. By now, very little work has been done to study and actively modulate the intracellular fate of nanocrystals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alyautdin R, Gothier, D., Petrov, V., Kharkevich, D., Kreuter, J. (1995) Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 41:44–48

    CAS  Google Scholar 

  • Auweter H, Bohn H, Heger R, Horn D, Siegel B, Siemensmeyer K (2002) Precipitated water-insoluble colorants in colloid disperse form. United States Patent 6,494,924

    Google Scholar 

  • Bénet N, Muhr H, Plasari E, Rousseaux JM (2002) New technologies for the precipitation of solid particles with controlled properties. Powder Technology 128 (2–3):93–98

    Article  Google Scholar 

  • Blunk T, Hochstrasser DF, Sanchez JC, Müller BW, Müller RH (1993) Colloidal carriers for intravenous drug targeting: plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 14 (12):1382–1387

    Article  PubMed  CAS  Google Scholar 

  • Böhm BHL (1999) Herstellung und Charakterisierung von Nanosuspensionen als neue Arzneiform für Arzneistoffe mit geringer Bioverfügbarkeit. PhD-thesis, Freie Universität Berlin

    Google Scholar 

  • Böhm BHL, Behnke D, Müller RH Production of paclitaxel nanosuspensions by high-pressure homogenisation. In: Int. Symp. Control. Rel. Bioact. Mater. 24, 1997. pp 927–928

    Google Scholar 

  • Buckton G, Beezer AE (1992) The relationship between particle size and solubility. International Journal of Pharmaceutics 82 (3):R7-R10

    Article  Google Scholar 

  • Byrappa K, Ohara S, Adschiri T (2008) Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Advanced Drug Delivery Reviews 60 (3):299–327

    Article  PubMed  CAS  Google Scholar 

  • Chen J-F, Wang Y-H, Guo F, Wang X-M, Zheng C (2009) Synthesis of Nanoparticles with Novel Technology: High-Gravity Reactive Precipitation. Industrial & Engineering Chemistry Research 39 (4):948–954

    Article  Google Scholar 

  • Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, Kipp J, Rabinow B, Gendelman HE (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183 (1):661–669

    Article  PubMed  CAS  Google Scholar 

  • Dye D, Watkins J (1980) Suspected anaphylactic reaction to Cremophor EL. Br Med J 280 (6228):1353

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Zhang D, Chen M, Duan C, Dai W, Jia L, Zhao W (2008) Studies on pharmacokinetics and tissue distribution of oridonin nanosuspensions. Int J Pharm 355 (1–2):321–327

    Article  PubMed  CAS  Google Scholar 

  • Gelperina SE, Khalansky AS, Skidan IN, Smirnova ZS, Bobruskin AI, Severin SE, Turowski B, Zanella FE, Kreuter J (2002) Toxicological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicology Letters 126 (2):131–141

    Article  PubMed  CAS  Google Scholar 

  • Göppert TM, Müller RH (2003) Plasma protein adsorption of Tween 80- and poloxamer 188-stabilized solid lipid nanoparticles. Journal of Drug Targeting 11 (4):225–231

    Article  PubMed  Google Scholar 

  • Johnson BK, Saad W, Prud’homme RK (2006) Nanoprecipitation of Pharmaceuticals Using Mixing and Block Copolymer Stabilization. In: Polymeric Drug Delivery II - ACS Symposium Series, vol 924. American Chemical Society, pp 278–291

    Google Scholar 

  • Keck CM, Müller RH (2010) smartCrystals – Review of the Second Generation of Drug Nanocrystals. In: Torchilin VP, Amiji MM (eds) Handbook of Materials for Nanomedicine. Imperial College Press, London, p Pan Stanford Publishing

    Google Scholar 

  • Kipp JE, Wong JCT, Doty MJ, Rebbeck CL (2003) Microprecipitation Method For Preparing Submicron Suspensions. United States Patent 6,607,784

    Google Scholar 

  • Kipp JE, Wong JCT, Doty MJ, Werling J, Rebbeck CL, Brynjelsen S (2005) Method for preparing submicron particle suspensions. 6,884,436

    Google Scholar 

  • Kreuter J (2001) Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47 (1):65–81

    Article  PubMed  CAS  Google Scholar 

  • Kreuter J, Petrov VE, Kharkevich DA, Alyautdin RN (1997) Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood-brain barrier using surfactant-coated nanoparticles. Journal of Controlled Release 49 (1):81–87

    Article  CAS  Google Scholar 

  • Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, Alyautdin R, von Briesen H, Begley DJ (2003) Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharmaceutical Research 20 (3):409–416

    Article  PubMed  CAS  Google Scholar 

  • Lind K, Kresse M, Müller RH (2001) Comparison of protein adsorption patterns onto differently charged hydrophilic superparamagnetic iron oxide particles obtained in vitro and ex vivo. Electrophoresis 22 (16):3514–3521

    Article  PubMed  CAS  Google Scholar 

  • List M, Sucker H. (1988) Pharmaceutical colloidal hydrosols for injection. GB Patent 2,200,048

    Google Scholar 

  • Liversidge GG, Conzentino P (1995) Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int J Pharm 125 (2):309–313

    Article  CAS  Google Scholar 

  • Liversidge GG, Cundy KC (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 125 (1):91–97

    Article  CAS  Google Scholar 

  • Liversidge GG, Cundy KC, Bishop JF, Czekai DA (1992) Surface modified drug nanoparticles. United States Patent 5,145,684

    Google Scholar 

  • Lück M, Paulke BR, Schröder W, Blunk T, Müller RH (1998) Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. Journal of Biomedical Materials Research 39 (3):478–485

    Article  PubMed  Google Scholar 

  • Merisko-Liversidge E Nanocrystals: Resolving Pharmaceutical Formulation Issues associated with poorly water-soluble Compounds. In: Marty JJ (ed) Particles, Orlando, 2002. Marcel Dekker

    Google Scholar 

  • Möschwitzer JP (2005) Method for the production of ultra-fine submicron suspensions. DE, 10 2005 011 786.4

    Google Scholar 

  • Möschwitzer J, Lemke A (2007) Method for carefully producing ultrafine particle suspensions and ultrafine particles and use thereof. PCT/EP2006/003377

    Google Scholar 

  • Müller RH (1991) Colloidal Carriers for Controlled Drug Delivery and Targeting. Wissenschaftliche Verlagsgesellschaft mbH, CRC Press, Stuttgart, Boston

    Google Scholar 

  • Müller RH, Shegokar R, Keck CM (in press) 20 Years of Lipid Nanoparticles (SLN, NLC): present state of development & industrial applications. Curr Drug Discov Technol PMID: 21291409

    Google Scholar 

  • Müller RH, Gohla S, Keck CM (submitted) State of the Art of Nanocrystals – special features, production, nanotoxicology aspects & intracellular delivery. European Journal of Pharmaceutics and Biopharmaceutics

    Google Scholar 

  • Müller RH, Junghanns J-U (2006) Drug nanocrystals/nanosuspensions for the delivery of poorly soluble drugs. In: Torchilin VP (ed) Nanoparticulates as Drug Carriers. 1 edn. Imperial College Press, London, pp 307–328

    Chapter  Google Scholar 

  • Müller RH, Möschwitzer J (2007) Method and device for producing very fine particles and coating such particles. PCT/EP2006/009930

    Google Scholar 

  • Müller RH, Becker R, Kruss B, Peters K (1999) Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and rate of solution. United States Patent 5,858,410

    Google Scholar 

  • Müller RH, Mäder K, Krause K (2000) Method for controlled production of ultrafine micro­particles and nanoparticles. PCT/EP2000/006535

    Google Scholar 

  • Müller RH, Lück M, Kreuter J (2001) Medicament excipient particles for tissue-specific application of a medicament. United States Patent 6,288,040

    Google Scholar 

  • Müller RH, Jacobs, C., Kayser, O. (2003) DissoCubes – a novel formulation for poorly soluble and poorly bioavailable drugs. In: Rathbone MJ, Hadgraft, J., Roberts, M. S. (ed) Modified-Release Drug Delivery Systems. Marcel Dekker, pp 135–149

    Google Scholar 

  • National Nanotechnology Initiative (NNI) (2001) What is Nanotechnology? http://www.nano.gov.

  • Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products (2009). Official Journal of the European Union L342:59–209

    Google Scholar 

  • Pardeike J, Müller RH (2010) Nanosuspensions: a promising formulation for the new phospholipase A2 inhibitor PX-18. Int J Pharm 391 (1–2):322–329

    Article  PubMed  CAS  Google Scholar 

  • Petersen RD (2006) Nanocrystals for use in topical fomulations and method of production thereof. PCT/EP2007/009943

    Google Scholar 

  • Rabinow B, Kipp J, Papadopoulos P, Wong J, Glosson J, Gass J, Sun CS, Wielgos T, White R, Cook C, Barker K, Wood K (2007) Itraconazole IV nanosuspension enhances efficacy through altered pharmacokinetics in the rat. Int J Pharm 339 (1–2):251–260

    Article  PubMed  CAS  Google Scholar 

  • Roubin R, Zolla-Pazner S (1979) Markers of macrophage heterogeneity. I. Studies of macrophages from various organs of normal mice. European Journal of Immunology 9 (12):972–978

    Article  PubMed  CAS  Google Scholar 

  • Schöler N (2001) Solid lipid nanoparticles (SLN) and nanosuspensions: In vitro cytotoxicity and therapeutic use in the model of reactivating toxoplasmosis in mice. Dissertation, PhD thesis, Freie Universität Berlin

    Google Scholar 

  • Schöler N, Krause C, Kayser O, Müller RH, Hahn H, Liesenfeld O In vitro efficacy of atovaquone nanosuspensions against toxoplasma gondii. In: 3rd World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology APGI/APV, Berlin, 2000. pp 437–438

    Google Scholar 

  • Schöler N, Krause, K., Kayser, O., Müller, R. H., Hartwig, H., Hahn, H., Liesenfeld, O. (2001) Atovaquone nanosuspensions show excellent therapeutic effect in a new murine model of reactivated toxoplasmosis. Antimicrobial Agents & Chemotherapy:1771–1779

    Google Scholar 

  • Schroeder U, Sommerfeld P, Sabel BA (1998) Efficacy of oral dalargin-loaded nanoparticle delivery across the blood-brain barrier. Peptides 19 (4):777–780

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Hunneyball lM (1986) Evaluation of poly(lactic acid) as a biodegradable drug delivery system for parenteral administration. International Journal of Pharmaceutics 30 (2–3):215–220

    Article  CAS  Google Scholar 

  • Staedtke V, Brahler M, Müller A, Georgieva R, Bauer S, Sternberg N, Voigt A, Lemke A, Keck C, Möschwitzer J, Bäumler H (2010) In vitro inhibition of fungal activity by macrophage-mediated sequestration and release of encapsulated amphotericin B nanosupension in red blood cells. Small 6 (1):96–103

    Article  PubMed  CAS  Google Scholar 

  • Strachan EB (1981) Case report--suspected anaphylactic reaction to Cremophor El. SAAD Dig 4 (9):209

    PubMed  CAS  Google Scholar 

  • Szejtli J (1988) Cyclodextrin technology. Kluwer Academic Publishers

    Google Scholar 

  • Wilkins DJ, Myres PA (1966) Studies on the relationship betweeen the electrophoretic properties of colloides and their blood clearance and organ distribution in the rat. British Journal of Experimental Pathology 47:568–576

    PubMed  CAS  Google Scholar 

  • Zirconium dioxide. Wikipedia

    Google Scholar 

Download references

Acknowledgement

The authors thank Abbott GmbH und Ko. KG and its drug delivery company Soliqs/Ludwigshafen in Germany for the kind permission to reproduce the NanoMorph picture in Fig. 1, right.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia M. Keck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Müller, R.H., Shegokar, R., Gohla, S., Keck, C.M. (2011). Nanocrystals: Production, Cellular Drug Delivery, Current and Future Products. In: Prokop, A. (eds) Intracellular Delivery. Fundamental Biomedical Technologies, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1248-5_15

Download citation

Publish with us

Policies and ethics