Skip to main content

Comparative Criteria for Models of the Vascular Transport Systems of Tall Trees

  • Chapter
  • First Online:
Size- and Age-Related Changes in Tree Structure and Function

Part of the book series: Tree Physiology ((TREE,volume 4))

Abstract

During the past decade, several detailed models of plant vascular transport systems (i.e. xylem and phloem) have been presented in the literature, and many of them are currently capable of accurately modelling the hydraulic characteristics of trees, including tall trees. This marks a departure from earlier modelling exercises in plant water relations, when models were intended primarily to promote an understanding of the biophysical and physiological mechanisms of transport, but whose performance was comparatively poor when they were required to predict the behaviour of organisms spanning the logarithmic ranges from small seedlings to gigantic old trees. In addition, many of these modelling efforts have assumed, more or less explicitly, that a principle of optimality operates in the design of the transport systems, i.e. they have assumed criteria by which various aspects of the transport system should be optimised. Moreover, these models are characterised by very different approaches, structures and objectives, and differ significantly with regard to several other important characteristics. Because models formally organise our knowledge, we review them here, in the hope of highlighting the theoretical progress achieved so far and the challenges remaining in our understanding of the vascular transport systems of trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anfodillo T, Carraro V, Carrer M, Fior C, Rossi S (2006) Convergent tapering of xylem conduits in different woody species. New Phytol 169:279–290

    PubMed  Google Scholar 

  • Becker P, Gribben RJ, Schulte PJ (2003) Incorporation of transfer resistance between tracheary elements into hydraulic resistance models for tapered conduits. Tree Physiol 23:1009–1019

    PubMed  Google Scholar 

  • Buckley TN, Roberts DW (2005) How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth? Tree Physiol 26:145–157

    Google Scholar 

  • Burgess SSO, Pittermann J, Dawson TE (2006) Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D. Don) crowns. Plant Cell Environ 29:229–239

    PubMed  Google Scholar 

  • Connor KF, Lanner RM (1990) Effects of tree age on secondary xylem and phloem anatomy in stems of Great Basin bristlecone pine (Pinus longaeva). Am J Bot 77:1070–1077

    Google Scholar 

  • Coomes DA, Duncan RP, Allen RB, Truscott J (2003) Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecol Lett 6:980–989

    Google Scholar 

  • Coomes DA, Heathcote S, Godfrey ER, Shepherd JJ, Sack L (2008) Scaling of xylem vessels and veins within the leaves of oak species. Biol Lett 4:302–306

    PubMed  Google Scholar 

  • Dixon HH, Joly J (1895) On the ascent of sap. Philos Trans R Soc B (London) 186:563–576

    Google Scholar 

  • Domec J-C, Lachenbruch B, Meinzer FC, Woodruff DR, Warren FM, McCulloh KA (2008) Maximum height in a conifer is associated with conflicting requirements for xylem design. Proc Natl Acad Sci USA 105:12069–12074

    PubMed  CAS  Google Scholar 

  • Ekblad A, Boström B, Holm A, Comstedt D (2005) Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143:136–142

    PubMed  Google Scholar 

  • Enns LC, McCully ME, Canny MJ (2006) Branch roots of young maize seedlings, their production, growth, and phloem supply from the primary root. Funct Plant Biol 33:391–399

    Google Scholar 

  • Ewers FW, Fisher JB (1991) Why vines have narrow stems: histological trends in Bauhinia (Fabaceae). Oecologia 88:233–237

    Google Scholar 

  • Gärdenäs AI (2000) Soil respiration fluxes measured along a hydrological gradient in a Norway spruce stand in south Sweden (Skogaby). Plant Soil 221:273–280

    Google Scholar 

  • Gartner BL (2002) Sapwood and inner bark quantities in relation to leaf area and wood density in Douglas-fir. IAWA J 23:267–285

    Google Scholar 

  • Ghouse AKM, Iqbal M (1977) Trends of size variation in phloem fibres and sieve-tube cells within the bark of some arid-zone trees. Flora 166:517–521

    Google Scholar 

  • Goeschl JD, Magnuson CE, DeMichele DW, Sharpe PJH (1976) Concentration-dependent unloading as a necessary assumption for a closed form mathematical model of osmotically driven pressure flow in phloem. Plant Physiol 58:556–562

    PubMed  CAS  Google Scholar 

  • Hacke UG, Sperr Pittermann J (2004) Analysis of circular bordered pit function. II. Gymnosperm tracheids with torus-margo pit membranes. Am J Bot 91:386–400

    PubMed  Google Scholar 

  • Hamid HA, Mencuccini M (2009) Age- and size-related changes in physiological characteristics and chemical composition of Acer pseudoplatanus and Fraxinus excelsior trees. Tree Physiol 29:27–38

    PubMed  Google Scholar 

  • Högberg P, Högberg MN, Göttlicher SG, Betson NR, Keel SG, Metcalfe DB, Campbell C, Schindlbacher A, Hurry V, Lundmark T, Linder S, Näsholm T (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–228

    PubMed  Google Scholar 

  • Holbrook NM, Zwieniecki MA (2005) Vascular transport in plants, Physiological ecology series. Academic, New York, 592 pp

    Google Scholar 

  • Hölttä T, Vesala T, Sevanto S, Perämäki M, Nikinmaa E (2006) Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis. Trees-Struct Funct 20:67–78

    Google Scholar 

  • Hölttä T, Cochard H, Mencuccini M, Nikinmaa E (2009a) Capacitive effect of cavitation in xylem conduits. Plant Cell Environ 32:10–21

    PubMed  Google Scholar 

  • Hölttä T, Nikinmaa E, Mencuccini M (2009b) Linking phloem function to structure: analysis with a coupled xylem-phloem transport model. J Theor Biol 259:325–337

    PubMed  Google Scholar 

  • Howarth WR, Pregitzer KS, Paul EA (1994) 14C allocation in tree soil systems. Tree Physiol 14:1163–1176

    Google Scholar 

  • Ishii H (2011) How do changes in leaf/shoot morphology and crown architecture affect growth and physiological function of tall trees? In: Meinzer FC, Lachenbruch B, Dawson TE (eds.) Size- and age-related changes in tree structure and function. Springer, Dordrecht

    Google Scholar 

  • Ishii HT, Jennings GM, Sillett SC, Koch GW (2008) Hydrostatic constraints on morphological exploitation of light in tall Sequoia sempervirens trees. Oecologia 156:751–63

    PubMed  Google Scholar 

  • Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ 13CO2 pulse labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to soil. New Phytol 153:327–334

    CAS  Google Scholar 

  • King DA (2011) Size-related changes in tree proportions and their potential influence on the course of height growth. In: Meinzer FC, Lachenbruch B, Dawson TE (eds.) Size- and age-related changes in tree structure and function. Springer, Dordrecht, pp 165–191

    Google Scholar 

  • Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854

    PubMed  CAS  Google Scholar 

  • Lachenbruch B, Moore JR, Evans R (2011) Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence. In: Meinzer FC, Lachenbruch B, Dawson TE (eds.) Size- and age-related changes in tree structure and function. Springer, Dordrecht, pp 121–164

    Google Scholar 

  • Lancashire JR, Ennos AR (2002) Modelling the hydrodynamic resistance of bordered pits. J Exp Bot 53:1485–1493

    PubMed  CAS  Google Scholar 

  • Lang A (1979) A relay mechanism for phloem translocation. Ann Bot 44:141–145

    Google Scholar 

  • Loepfe L, Martinez-Vilalta J, Piñol J, Mencuccini M (2007) The relevance of xylem network structure for plant hydraulic efficiency and safety. J Theor Biol 247:788–803

    PubMed  Google Scholar 

  • Lush WM (1976) Leaf structure and translocation of dry matter in a C3 and a C4 grass. Planta 130:235–244

    CAS  Google Scholar 

  • MacDaniels LH (1918) The histology of the phloem in certain woody angiosperms. Am J Bot 5:347–378

    Google Scholar 

  • Magnani F (1999) Plant energetics and population density. Scientific correspondence. Nature 398:572

    Google Scholar 

  • Magnani F, Mencuccini M, Grace J (2000) Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant Cell Environ 23:251–263

    Google Scholar 

  • Magnani F, Grace J, Borghetti M (2002) Adjustment of tree structure in response to the environment under hydraulic constraints. Funct Ecol 16:385–393

    Google Scholar 

  • Mäkelä A (1986) Implications of the pipe model theory on dry matter partitioning and height growth in trees. J Theor Biol 123:103–120

    Google Scholar 

  • Mäkelä A (1989) Modeling structural-functional relationships in whole-tree growth: resource allocation. In: Dixon RH, Meldahl RS, Ruark GA, Warren WG (eds.) Process modelling of forest growth responses to environmental stresses. Timber Press, Portland, pp 81–95

    Google Scholar 

  • Mäkelä A, Hari P (1986) Stand growth model based on carbon uptake and allocation in individual trees. Ecol Model 33:205–229

    Google Scholar 

  • Mäkelä A, Valentine H (2006) The quarter-power scaling model does not imply size-invariant hydraulic resistance in plants. J Theor Biol 243:283–285

    PubMed  Google Scholar 

  • Martinez-Vilalta J, Korakaki E, Vanderklein D, Mencuccini M (2007a) Belowground hydraulic conductance is a function of environmental conditions and tree size in Scots pine. Funct Ecol 6:1072–1083

    Google Scholar 

  • Martinez-Vilalta J, Vanderklein D, Lee S, Mencuccini M (2007b) Tree height and the age-related decline in growth in Scots pine (Pinus sylvestris L.). Oecologia 150:529–544

    PubMed  Google Scholar 

  • McCulloh KA, Sperry JS (2005) Patterns in hydraulic architecture and their implications for transport efficiency. Tree Physiol 25:257–267

    PubMed  Google Scholar 

  • McCulloh KA, Sperry JS, Adler FR (2003) Water transport in plants obeys Murray’s law. Nature 421:939–942

    PubMed  CAS  Google Scholar 

  • McCulloh KA, Sperry JS, Adler FR (2004) Murray’s law and the hydraulic vs. mechanic functioning of wood. Funct Ecol 18:931–938

    Google Scholar 

  • McDowell NG, Barnard H, Bond BJ, Hinckley T, Hubbard RM, Ishii H, Köstner B, Magnani F, Marshall JD, Meinzer FC, Phillips N, Ryan MG, Whitehead D (2002) The relationship between tree height and leaf area: sapwood area ratio. Oecologia 132:12–20

    Google Scholar 

  • McDowell NG, Bond BJ, Hill LT, Ryan MG, Whitehead D (2011) Relationships between tree height and carbon isotope discrimination. In: Meinzer FC, Lachenbruch B, Dawson TE (eds.) Size- and age-related changes in tree structure and function. Springer, Dordrecht, pp 255–286

    Google Scholar 

  • Meinzer FC, James SA, Goldstein G, Woodruff D (2003) Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees. Plant Cell Environ 26:1147–1155

    Google Scholar 

  • Meinzer FC, Brooks JR, Domec JC, Gartner BL, Warren JM, Woodruff DR, Bible K, Shawn DC (2006) Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques. Plant Cell Environ 29:105–114

    PubMed  CAS  Google Scholar 

  • Mencuccini M (2002) Hydraulic constraints in the functional scaling of trees. Tree Physiol 22:553–565

    PubMed  Google Scholar 

  • Mencuccini M (2003) The ecological significance of long distance water transport: short-term regu­lation and long-term acclimation across plant growth forms. Plant Cell Environ 26:163–182

    Google Scholar 

  • Mencuccini M, Hölttä T (2010) The significance of phloem transport for the speed of link between canopy photosynthesis and belowground respiration. New Phytol 185:189–203

    PubMed  CAS  Google Scholar 

  • Mencuccini M, Martinez-Vilalta J, Vanderklein D, Hamid HA, Korakaki E, Lee S, Michiels B (2005) Size-mediated ageing reduces vigour in tall trees. Ecol Lett 8:1183–1190

    PubMed  CAS  Google Scholar 

  • Mencuccini M, Hölttä T, Petit G, Magnani F (2007) Sanio’s Laws revisited. Size-dependent changes in the xylem architecture of trees. Ecol Lett 10:1084–1093

    PubMed  Google Scholar 

  • Mencuccini M, Martinez-Vilalta J, Piñol J, Loepfe L, Burnat M, Alvarez X, Camacho J, Gil D (2010) A quantitative and statistically robust method for the determination of xylem conduit spatial distribution. Am J Bot 97:1247–1259

    PubMed  Google Scholar 

  • Mikan CJ, Zak DR, Kubiske ME, Pregitzer KS (2000) Combined effects of atmospheric CO2 and N availability on the belowground carbon and nitrogen dynamics of aspen mesocosms. Oecologia 124:432–445

    Google Scholar 

  • Münch E (1927) Versuche über den Saftkreislauf. Ber Dtsch Bot Gesel 45:340–356

    Google Scholar 

  • Murray CD (1926) The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12:207–214

    PubMed  CAS  Google Scholar 

  • Petit G, Anfodillo T, Mencuccini M (2008) Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus L.) trees. New Phytol 177:653–664

    PubMed  Google Scholar 

  • Petit G, Pfautsch S, Anfodillo T, Adams MA (2010) The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance. New Phytol 187:1146–1153

    PubMed  Google Scholar 

  • Phillips RJ, Dungan SR (1993) Asymptotic analysis of flow in sieve tubes with semi-permeable walls. J Theor Biol 162:465–485

    Google Scholar 

  • Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH (2006a) Inter-tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection. Am J Bot 93:1265–1273

    PubMed  Google Scholar 

  • Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006b) Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell Environ 29:1618–1628

    PubMed  Google Scholar 

  • Quilhó T, Pereira H, Richter HG (2000) Within–tree variation in phloem cell dimensions and proportions in Eucalyptus globulus. IAWA J 21:31–40

    Google Scholar 

  • Raskatov PB, Kosichenko NE (1968) On the characterization of the phloem elements in different sections of the aspen (Populus tremula L.) trunk. Bot Z SSSR 53:1612–16

    Google Scholar 

  • Reich PB, Tjolker MG, Machado J-L, Oleksin J (2006) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439:457–461

    PubMed  CAS  Google Scholar 

  • Roderick ML, Berry SL (2001) Linking wood density with tree growth and environment: a theoretical analysis based on the motion of water. New Phytol 149:473–485

    Google Scholar 

  • Rosner S, Baier P, Kikuta SB (2001) Osmotic potential of Norway spruce [Picea abies (L.) Karst.] secondary phloem in relation to anatomy. Trees 15:472–482

    Google Scholar 

  • Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant Cell Environ 29:367–381

    PubMed  Google Scholar 

  • Sack L, Marañón T, Grubb P (2002) Comment on: global allocation rules for patterns of biomass partitioning (Science, 295:1517–20). Science 296:1923

    PubMed  Google Scholar 

  • Sala A, Hoch G (2009) Height-related growth declines in ponderosa pine are not due to carbon limitation. Plant Cell Environ 32:22–30

    PubMed  Google Scholar 

  • Sala A, Fouts W, Hoch G (2011) Carbon storage in trees: does relative carbon supply decrease with tree size? In: Meinzer FC, Lachenbruch B, Dawson TE (eds.) Size- and age-related changes in tree structure and function. Springer, Dordrecht, pp 287–306

    Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Miralles-Wilhelm F (2007) Biophysical properties and functional significance of stem water storage tissues in neo-tropical savanna trees. Plant Cell Environ 30:236–248

    PubMed  Google Scholar 

  • Scholz FG, Phillips NG, Bucci SJ, Meinzer FC, Goldstein G (2011) Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size. In: Meinzer FC, Lachenbruch B, Dawson TE (eds.) Size- and age-related changes in tree structure and function. Springer, Dordrecht, pp 341–361

    Google Scholar 

  • Schulz A, Behnke H-D (1986) Fluorescence and electron microscopic investigations of the phloem of beech, Norway spruce and silver fir, showing different degrees of damage symptoms. Conference2 Statuskolloquium des PEF, Karlsruhe (Germany)

    Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964a) A quantitative analysis of plant form – the pipe model theory. I. Basic analyses. Jpn J Ecol 14:97–105

    Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964b) A quantitative analysis of plant form – the pipe model theory. II. Further evidence of the theory and its application in forest ecology. Jpn J Ecol 14:133–139

    Google Scholar 

  • Sillett SC, Van Pelt R, Koch GW, Ambrose AR, Carroll AL, Antoine ME, Mifsud BM (2010) Increasing wood production through old age in tall trees. For Ecol Manag 259:976–994

    Google Scholar 

  • Sperry JS, Hacke UG (2004) Analysis of circular bordered pit function. I. Angiosperm vessels with homogenous pit membranes. Am J Bot 91:369–385

    PubMed  Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500

    PubMed  Google Scholar 

  • Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ 31:632–645

    PubMed  Google Scholar 

  • Stahel J (1968) Quantitative und qualitative Alterungsphänomene in Pappeln (Populus × euramericana (Dode) Guinier cv. ‘Robusta’). Wood Prod 26:418–427

    Google Scholar 

  • Steinmann K, Siegwolf RTW, Saurer M, Körner C (2004) Carbon fluxes to the soil in a mature temperate forest assessed by 13C isotope tracing. Oecologia 141:489–501

    PubMed  Google Scholar 

  • Steppe K, Niinemets Ü, Teskey RO (2011) Tree size- and age-related changes in leaf physiology and their influence on carbon gain. In: Meinzer FC, Lachenbruch B, Dawson TE (eds.) Size- and age-related changes in tree structure and function. Springer, Dordrecht, pp 235–253

    Google Scholar 

  • Thompson M (2006) Phloem: the long and the short of it. Trends Plant Sci 11:26–32

    PubMed  CAS  Google Scholar 

  • Thompson MV, Holbrook NM (2003a) Application of a single-solute non-steady-state phloem model to the study of long-distance assimilate transport. J Theor Biol 220:419–455

    PubMed  Google Scholar 

  • Thompson MV, Holbrook NM (2003b) Scaling phloem transport: water potential equilibrium and osmoregulatory flow. Plant Cell Environ 26:1561–1577

    Google Scholar 

  • Thompson MV, Holbrook NM (2004) Scaling phloem transport: information transmission. Plant Cell Environ 27:509–519

    Google Scholar 

  • Trockenbrodt M (1994) Quantitative changes of some anatomical characters during bark development in Quercus robur, Ulmus glabra, Populus tremula and Betula pendula. IAWA J 15:387–398

    Google Scholar 

  • Tyree MT, Christy AL, Ferrier JM (1974) A simpler iterative steady state solution of Münch pressure flow systems applied to long and short translocation paths. Plant Physiol 54:589–600

    PubMed  CAS  Google Scholar 

  • Vollenweider P, Dustin I, Hofer R, Vittoz P, Hainard P (1994) A study of the cambial zone and conductive phloem of common beech (Fagus sylvatica L.) using an image analysis method. Trees 9:106–112

    Google Scholar 

  • Weitz JS, Ogle K, Horn HS (2006) Ontogenetically stable hydraulic design in woody plants. Funct Ecol 20:191–199

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    PubMed  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular system. Nature 400:664–667

    CAS  Google Scholar 

  • Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ 28:800–812

    Google Scholar 

  • Woodruff DR, Meinzer FC (2011) Size-dependent changes in biophysical control of tree growth: the role of turgor. In: Meinzer FC, Lachenbruch B, Dawson TE (eds.) Size- and age-related changes in tree structure and function. Springer, Dordrecht, pp 363–384

    Google Scholar 

  • Woodruff DR, Bond BJ, Meinzer FC (2004) Does turgor limit growth in tall trees? Plant Cell Environ 27:229–236

    Google Scholar 

  • Woodruff DR, McCulloh KA, Warren JM, Meinzer FC, Lachenbruch B (2007) Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir. Plant Cell Environ 30:559–569

    PubMed  Google Scholar 

  • Woodruff DR, Meinzer FC, Lachenbruch B (2008) Height-related trends in leaf xylem anatomy and shoot hydraulic characteristics in a tall conifer: safety versus efficiency in water transport. New Phytol 180:90–99

    PubMed  CAS  Google Scholar 

  • Zaehle S, Sitch S, Prentice IC, Liski J, Cramer W, Erhard M, Hickler T, Smith B (2006) The importance of age-related decline in forest NPP for modeling regional carbon balances. Ecol Appl 16:1555–1574

    PubMed  Google Scholar 

  • Zimmermann MH, Brown CL (1971) Trees, structure and function. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

The authors thank the Catalan government (AGAUR – Generalitat de Catalunya) for a visiting Professorship in UAB to Maurizio Mencuccini. Thanks are due to two anonymous reviewers, for providing useful suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Mencuccini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mencuccini, M., Hölttä, T., Martinez-Vilalta, J. (2011). Comparative Criteria for Models of the Vascular Transport Systems of Tall Trees. In: Meinzer, F., Lachenbruch, B., Dawson, T. (eds) Size- and Age-Related Changes in Tree Structure and Function. Tree Physiology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1242-3_12

Download citation

Publish with us

Policies and ethics