Skip to main content

Carbon Storage in Trees: Does Relative Carbon Supply Decrease with Tree Size?

  • Chapter
  • First Online:
Size- and Age-Related Changes in Tree Structure and Function

Part of the book series: Tree Physiology ((TREE,volume 4))

Abstract

Until very recently, age- and size-related declines in productivity of individual trees and stands have been attributed to reductions of carbon availability due either to progressive increases in carbon sinks other than growth (Respiration hypothesis) or to decreases carbon sources (Assimilation hypothesis). Although the validity of these hypotheses is now questioned and new alternative explanations have been proposed, actual data on size-dependent changes of stored mobile carbon in mature trees (used as indicators of carbon balance between source and sink activities) are surprisingly limited. Based on available data for mature trees and consistent with evidence that mature trees under current atmospheric CO2 concentrations are not carbon limited, the relative carbon supply in trees does not become increasingly limited as they grow large. In spite of many uncertainties, research to date points to the need to question the historically carbon-centric mechanisms proposed to explain age-related growth declines in trees and forests. Future research should focus on whether and when alternative growth limiting factors (e.g. turgor, long distance transport of assimilates, nutrients) may contribute to growth limitations in tall trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agüera E, Ruano D, Cabello P, de la Haba P (2006) Impact of atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in cucumber (Cucumis sativus L.) plants. J Plant Physiol 163:809–817

    Article  PubMed  Google Scholar 

  • Arndt SK, Livesley SJ, Merchant A, Bleby TM, Grierson PF (2008) Quercitol and osmotic adaptation of field-grown Eucalyptus under seasonal drought stress. Plant Cell Environ 31:915–924

    Article  PubMed  CAS  Google Scholar 

  • Bansal S, Germino MJ (2008) Carbon balance of conifer seedlings at timberline: relative changes in uptake, storage, and utilization. Oecologia 158:217–227

    Article  PubMed  CAS  Google Scholar 

  • Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22:1201–1210

    PubMed  CAS  Google Scholar 

  • Barbaroux C, Bréda N, Dufrêne E (2003) Distribution of above-ground and below-ground carbohydrate reserves of adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytol 157:605–616

    Article  Google Scholar 

  • Barnard HR, Ryan MG (2003) A test of the hydraulic limitation hypothesis in fast-growing Eucalyptus saligna. Plant Cell Environ 26:1235–1245

    Article  Google Scholar 

  • Bentrup CR (2009) Evidence for carbon limitations to height growth in the tallest trees. M.S. thesis, Northern Arizona University, Flagstaff, 42 p

    Google Scholar 

  • Callaway RM, Sala A, Keane RE (2000) Succession may maintain high leaf area: sapwood area ratios and productivity in old subalpine forests. Ecosystems 3:254–268

    Article  Google Scholar 

  • Canham CD, Kobe RK, Latty EF, Chazdon RL (1999) Interspecific and intraspecific variation in tree seedling survival: effects of allocation to roots versus carbohydrate reserves. Oecologia 121:1–11

    Article  Google Scholar 

  • Chapin FS, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447

    Article  Google Scholar 

  • Coyea MR, Margolis HA (1992) Factors affecting the relationship between sapwood area and leaf area of balsam fir. Can J For Res 22:1684–1693

    Article  Google Scholar 

  • Day ME, Greenwood MS (2011) Regulation of ontogeny in temperate conifers. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function. Springer, Dordrecht

    Google Scholar 

  • Domisch T, Finér L, Lehto T (2001) Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Tree Physiol 21:465–472

    PubMed  CAS  Google Scholar 

  • Fischer C, Höll W (1991) Food reserves of Scots pine (Pinus sylvestris L.) I. Seasonal changes in the carbohydrate and fat reserves of pine needles. Trees 5:187–195

    Article  Google Scholar 

  • Friend AD (1993) The prediction and physiological significance of tree height. In: Solomon AM, Shugart HH (eds) Vegetation dynamics and global change. Chapman & Hall, New York, pp 101–115

    Chapter  Google Scholar 

  • Genet H, Bréda N, Dufrêne E (2010) Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiol 30:177–192

    Article  PubMed  CAS  Google Scholar 

  • Goldstein G, Andrade JL, Meinzer FC, Holbrook NM, Cavelier J, Jackson P, Celis A (1998) Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell Environ 21:397–406

    Article  Google Scholar 

  • Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary production decline with stand age: potential causes. Trends Ecol Evol 11:378–382

    Article  PubMed  CAS  Google Scholar 

  • Hoch G (2005) Fruit-bearing branchlets are carbon autonomous in mature broad-leaved temperate forest trees. Plant Cell Environ 28:651–659

    Article  CAS  Google Scholar 

  • Hoch G (2008) The carbon supply of Picea abies trees at a Swiss montane permafrost site. Plant Ecol Divers 1:13–20

    Article  Google Scholar 

  • Hoch G, Keel SG (2006) 13 C labelling reveals different contributions of photoassimilates from infructescences for fruiting in two temperate forest tree species. Plant Biol 8:606–614

    Article  PubMed  CAS  Google Scholar 

  • Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135:10–21

    PubMed  Google Scholar 

  • Hoch G, Körner C (2005) Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct Ecol 19:941–951

    Article  Google Scholar 

  • Hoch G, Körner C (2009) Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures. J Ecol 97:57–66

    Article  Google Scholar 

  • Hoch G, Popp M, Körner C (2002) Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98:361–374

    Article  CAS  Google Scholar 

  • Hoch G, Richter A, Körner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26:1067–1081

    Article  CAS  Google Scholar 

  • Ishii H (2011) How do changes in leaf/shoot morphology and crown architecture affect growth and physiological function of large, old trees? In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function. Springer, Dordrecht

    Google Scholar 

  • Ishii HT, Jennings JM, Sillett SC, Koch GW (2008) Hydrostatic constraints on morphological exploitation of light in tall Sequoia sempervirens trees. Oecologia 156:751–763

    Article  PubMed  Google Scholar 

  • Jordan MO, Habib R (1996) Mobilizable carbon reserves in young peach trees as evidenced by trunk girdling experiments. J Exp Bot 47:79–87

    Article  CAS  Google Scholar 

  • King DA (2011) Size-related changes in tree proportions and their potential influence on the course of height growth. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function. Springer, Dordrecht

    Google Scholar 

  • Kira T, Shidei T (1967) Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Jpn J Ecol 13:70–83

    Google Scholar 

  • Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits of tree height. Nature 428:851–854

    Article  PubMed  CAS  Google Scholar 

  • Körner C (2003) Carbon limitation in trees. J Ecol 91:4–17

    Article  Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    Article  PubMed  Google Scholar 

  • Kozlowski TT, Keller T (1966) Food relations of woody plants. Bot Rev 32:293–383

    Article  CAS  Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Physiology of woody plants, 2nd edn. Academic, San Diego

    Google Scholar 

  • Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic, San Diego

    Google Scholar 

  • Landhäusser SM, Lieffers VJ (2003) Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones. Trees 17:471–476

    Google Scholar 

  • Larcher W (2003) Physiological plant ecology. Springer, Berlin

    Google Scholar 

  • Li MH, Hoch G, Körner C (2002) Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline. Trees 16:331–337

    Article  CAS  Google Scholar 

  • Machado J-L, Reich PB (2006) Dark respiration rate increases with plant size in saplings of three temperate tree species despite decreasing tissue nitrogen and nonstructural carbohydrates. Tree Physiol 26:915–923

    PubMed  CAS  Google Scholar 

  • Mediavilla S, Escudero A (2009) Ontogenetic changes in leaf phenology of two co-occurring Mediterranean oaks differing in leaf life span. Ecol Res 24:1083–1090

    Article  Google Scholar 

  • Meinzer FC, Bond BJ, Karanian JA (2008) Biophysical constraints on leaf expansion in a tall conifer. Tree Physiol 28:197–206

    PubMed  Google Scholar 

  • Mencuccini M, Hölttä T (2010) The significance of phloem transport for the speed of link between canopy photosynthesis and belowground respiration. New Phytol 185:189–203

    Article  PubMed  CAS  Google Scholar 

  • Mencuccini M, Hölttä T, Petit G, Magnani F (2007) Sanio’s Laws revisited. Size-dependent changes in the xylem architecture of trees. Ecol Lett 10:1084–1093

    Article  PubMed  Google Scholar 

  • Millard P, Sommerkorn M, Grelet GA (2007) Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytol 175:11–28

    Article  PubMed  CAS  Google Scholar 

  • Newell EA, Mulkey SS, Wright JS (2002) Seasonal patterns of carbohydrate storage in four tropical tree species. Oecologia 131:333–342

    Article  Google Scholar 

  • Niklas KJ (2007) Maximum plant height and the biophysical factors that limit it. Tree Physiol 27:433–440

    PubMed  Google Scholar 

  • Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309:600–603

    Article  PubMed  CAS  Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699

    Article  PubMed  CAS  Google Scholar 

  • Peet RK (1980) Changes in biomass and production during secondary forest succession. In: West DC, Shugart HH, Botkin DB (eds) Forest succession concepts and application. Springer, New York, pp 324–338

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  CAS  Google Scholar 

  • Piper FI, Cavieres LA, Reyes-Diaz M, Corcuera LJ (2006) Carbon sink limitation and frost tolerance control performance of the tree Kageneckia angustifolia D. Don (Rosaceae) at the treeline in central Chile. Plant Ecol 185:29–39

    Article  Google Scholar 

  • Piper FI, Reyes-Diaz M, Corcuera LJ, Lusk CH (2009) Carbohydrate storage, survival, and growth of two evergreen Nothofagus species in two contrasting light environments. Ecol Res 24:1233–1241

    Article  CAS  Google Scholar 

  • Pruyn ML, Gartner BL, Harmon ME (2005) Storage versus substrate limitation to bole respiratory potential in two coniferous tree species of contrasting sapwood width. J Exp Bot 56:2637–2649

    Article  PubMed  CAS  Google Scholar 

  • Ryan MG, Waring RH (1992) Maintenance respiration and stand development in a subalpine lodgepole pine forest. Ecology 73:2100–2108

    Article  Google Scholar 

  • Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47:235–242

    Article  Google Scholar 

  • Ryan MG, Binkely D, Fownes JH (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:213–262

    Article  Google Scholar 

  • Ryan MG, Binkley D, Fownes JH, Giardina CP, Senock RS (2004) An experimental test of the causes of forest growth decline with stand age. Ecol Monogr 74:393–414

    Article  Google Scholar 

  • Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant Cell Environ 29:367–381

    Article  PubMed  Google Scholar 

  • Sala A, Hoch G (2009) Height-related growth declines in ponderosa pine are not due to carbon limitation. Plant Cell Environ 32:22–30

    Article  PubMed  Google Scholar 

  • Sala A, Piper F, Hoch G (2010) Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol 186:274–281

    Article  PubMed  Google Scholar 

  • Saranpää P, Nyberg H (1987) Lipids and sterols of Pinus sylvestris L. sapwood and heartwood. Trees 1:82–87

    Google Scholar 

  • Sayer MAS, Haywood J (2006) Fine root production and carbohydrate concentrations of mature longleaf pine (Pinus palustris P. Mill.) as affected by season of prescribed fire and drought. Trees 20:165–175

    Article  Google Scholar 

  • Schädel C, Blöchl A, Richter A, Hoch G (2009) Short-term dynamics of nonstructural carbohydrates and hemicelluloses in young branches of temperate forest trees during bud break. Tree Physiol 29:901–911

    Article  PubMed  Google Scholar 

  • Scholz F, Phillips NG, Bucci SJ, Meinzer FC, Goldstein G (2011) Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function. Springer, Dordrecht

    Google Scholar 

  • Shi P, Körner C, Hoch G (2006) End of season carbon supply status of woody species near the treeline in western China. Basic Appl Ecol 7:370–377

    Article  CAS  Google Scholar 

  • Shi P, Körner C, Hoch G (2008) A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas. Funct Ecol 22:213–220

    Article  Google Scholar 

  • Siegenthaler U et al (2005) Stable carbon cycle-climate relationship during the late Pleistocene. Science 310:1313–1317

    Article  PubMed  CAS  Google Scholar 

  • Smith AM, Stitt M (2007) Coordination of carbon supply and plant growth. Plant Cell Environ 30:1126–1149

    Article  PubMed  CAS  Google Scholar 

  • Solfjeld I, Johnsen O (2006) The influence of root-zone temperature on growth of Betula pendula Roth. Trees 20:320–328

    Article  Google Scholar 

  • Srichuwong S, Jane JL (2007) Physicochemical properties of starch affected by molecular composition and structures: a review. Food Sci Biotechnol 16:663–674

    CAS  Google Scholar 

  • Steppe K, Niinemets U, Teskey RO (2011) Tree size- and age-related changes in leaf physiology and their influence on carbon gain. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function. Springer, Dordrecht

    Google Scholar 

  • Stevens GC, Fox JF (1991) The causes of treeline. Annu Rev Ecol Syst 22:177–191

    Article  Google Scholar 

  • Teng NJ, Wang J, Chen T, Wu XQ, Wang YH, Lin JX (2006) Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol 172:92–103

    Article  PubMed  CAS  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Biol 40:19–38

    Article  Google Scholar 

  • Vargas R, Trumbore S, Allen MF (2009) Evidence of old carbon used to grow new fine roots in a tropical forest. New Phytol 182:710–718

    Article  PubMed  Google Scholar 

  • Whittaker RH, Woodwell GM (1967) Surface area relations of woody plants and forest communities. Am J Bot 54:931–939

    Article  Google Scholar 

  • Woodruff DR, Meinzer FC (2011) Size-dependent changes in biophysical control of tree growth: the role of turgor. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function. Springer, Dordrecht

    Google Scholar 

  • Woodruff DR, Bond BJ, Meinzer FC (2004) Does turgor limit growth in tall trees? Plant Cell Environ 27:229–236

    Article  Google Scholar 

  • Würth MKR, Pelaez-Riedl S, Wright SJ, Körner C (2005) Non-structural carbohydrate pools in a tropical forest. Oecologia 143:11–24

    Article  PubMed  Google Scholar 

  • Yoder BJ, Ryan MG, Waring RH, Schoettle AW, Kaufmann MR (1994) Evidence of reduced photosynthetic rates in old trees. For Sci 40:513–527

    Google Scholar 

  • Zhang Y-I, Meinzer FC, Hao G-Y, Scholz FG, Bucci SJ, Takahashi FSC, Villalobos-Vega R, Giraldo JP, Cao K-F, Hoffmann WA, Goldstein G (2009) Size-dependent mortality in a Neotropical savanna tree: the role of height-related adjustments in hydraulic architecture and carbon allocation. Plant Cell Environ 32:1456–1466

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

Two anonymous reviewers provided very useful comments to improve this manuscript. Funding for this research was provided in part by NSF (DEB- 05–15756) and subsequent REU supplement to support WF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Sala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sala, A., Fouts, W., Hoch, G. (2011). Carbon Storage in Trees: Does Relative Carbon Supply Decrease with Tree Size?. In: Meinzer, F., Lachenbruch, B., Dawson, T. (eds) Size- and Age-Related Changes in Tree Structure and Function. Tree Physiology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1242-3_11

Download citation

Publish with us

Policies and ethics