Advertisement

Ion Beam Analysis

  • D. K. Avasthi
  • G. K. Mehta
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 145)

Abstract

The Ion Beam Analysis (IBA) techniques are powerful tools to investigate the composition of a material in a non-destructive way. Ion beams impinging on a material induce several processes simultaneously which lead to emission of secondary radiation and particles as illustrated in Fig. 3.1.

Keywords

Accelerator Mass Spectrometry Rutherford Backscatter Spectrometry Recoil Energy Accelerator Mass Spectrometry Nuclear Reaction Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Handbook of Modern Ion Beam Materials Analysis. Editors M.A. Nastasi, J.R. Tesmer, Material Research Society (2009), ISBN: 1558992545.Google Scholar
  2. 2.
    G. Schiweitz, P. Grande, B. Skogvall, J.P. Biersack, R. Köhrbrück, K. Sommer, A. Schmoldt, P. Goppelt, I. Kadar, S. Ricz and U. Stettner, Phys. Rev. Lett., 69 (1992) 628.ADSCrossRefGoogle Scholar
  3. 3.
    G. Xiao, G. Schiwietz, P.L. Grande, N. Stolterfoht, A. Schmoldt, M. Grether, R. Köhrbrück, A. Spieler and U. Stettner, Phys. Rev. Lett., 79 (1997) 1821.ADSCrossRefGoogle Scholar
  4. 4.
    G. Schiwietz, G. Xiao, P.L. Grande, E. Luderer, R. Pazirandeh and U. Stettner, Euro Phys. Letts., 47 (1999) 384.ADSCrossRefGoogle Scholar
  5. 5.
    T.B. Johansson, R. Akselsson and S.A.E. Johansson, Nucl. Instr. and Meth., B 84 (1970) 141.ADSCrossRefGoogle Scholar
  6. 6.
    M. Volfinger, Journal of Radioanalytical and Nuclear Chemistry, 253 (2002) 413.CrossRefGoogle Scholar
  7. 7.
    A. Ene, I.V. Popescu and T. Badica, Journal of Optoelectronics and Advanced Materials, 8 (2006) 222.Google Scholar
  8. 8.
    K.G. Malmqvist, M. Elfman, G. Remond and C. Yang, Nucl. Instr. and Meth., B 109/110 (1996) 227.ADSGoogle Scholar
  9. 9.
    C. Yang, N.P-O. Homman, L. Johansson and K.G. Malmqvist, Nucl. Instr. and Meth., B 85 (1994) 808.ADSGoogle Scholar
  10. 10.
    H. Nagabhushana, B. Umesh, B.M. Nagabhushana, B.N. Lakshminarasappa, Fouran Singh and R.P.S. Chakradhar, Phil. Mag., 89 (2009) 995.ADSCrossRefGoogle Scholar
  11. 11.
    H. Nagabhushana, S.C. Prashantha, B.N. Lakshminarasappa and Fouran Singh, Journal of Luminescence, 128 (2008) 7.ADSCrossRefGoogle Scholar
  12. 12.
    H. Nagabhushana, S.C. Prashantha, B.M. Nagabhushana, B.N. Lakshminarasappa, Fouran Singh and R.P.S. Chakradhar, Solid State Communications, 147 (2008) 377.ADSCrossRefGoogle Scholar
  13. 13.
    W.K. Chu, J.W. Mayer and M.-A. Nicolet, Rutherford Backscattering Spectrometry, Academic Press. Orlando, FL (1978).Google Scholar
  14. 14.
    Leonard C. Feldman and James W. Mayer, Fundamentals of Surface and Thin Film Analysis, North Holland (1986).Google Scholar
  15. 15.
    L.R. Doolittle, Nucl. Instr. and Meth., B 9 (1985) 344.ADSGoogle Scholar
  16. 16.
    D.S. Gemmel, Rev. Mod. Phys., 46 (1974) 129.ADSCrossRefGoogle Scholar
  17. 17.
    J.W. Mayer, L. Eriksson and J.A. Davies, Ion Implantation in Semiconductors, Academic Press, New York (1970).Google Scholar
  18. 18.
    P.K. Sahoo, S. Gupta, A. Pradhan and V.N. Kulkarni, Nucl. Instr. and Meth., B 216 (2004) 313.ADSGoogle Scholar
  19. 19.
    A.P. Pathak, S.V.S. Nageswara Rao, A.M. Siddiqui, G.B.V.S. Lakshmi, S.K. Srivastava, S. Ghosh, D. Bhattacharya, D.K. Avasthi, D.K. Goswami, P. Satyam, B.N. Dev and A. Turos, Nucl. Instr. and Meth., B 193 (2002) 319.ADSGoogle Scholar
  20. 20.
    S.V.S.N. Rao, Anand P. Pathak, Azher M. Siddiqui, D.K. Avasthi, Claudiu Muntele, Daryush Ila, B.N. Dev, R. Muralidharan, F. Eichhorn, R. Groetzschel and A. Turos, Nucl. Instr. and Meth., B 212 (2003) 442.ADSGoogle Scholar
  21. 21.
    J.L. ′Ecuyer, Nucl. Instr. and Meth., B 149 (1978) 271.ADSGoogle Scholar
  22. 22.
    J.L. ′Ecuyer, C. Brassard, C. Cardinal, J. Chabbal, L. DescMnes, J.P. Labrie, B. Terreault, J.G. Martel and R.St.-Jacques, Journal of Appl Phys., 47 (1976) 381.ADSCrossRefGoogle Scholar
  23. 23.
    H.A. Rijken, S.S. Klien and M.J.A. de Voigt, Nucl. Instr. and Meth., B 64 (1992) 395.ADSGoogle Scholar
  24. 24.
    J.P. Thomas, M. Fallavier, D. Ramdane, N. Chevarier and A. Chevarier, Nucl. Instr. and Meth., 218 (1983) 125.CrossRefGoogle Scholar
  25. 25.
    R. Yu and T. Gustafsson, Surface Sci., 177 (1986) L987.CrossRefGoogle Scholar
  26. 26.
    D.K. Avasthi, D. Kabiraj, A. Bhagwat, G.K. Mehta, V.D. Vankar and S.B. Ogale, Nucl. Instr. and Meth., B 93 (1994) 480.ADSGoogle Scholar
  27. 27.
    D.K. Avasthi, S.K. Hui, E.T. Subramaniyam and B.R. Mehta, Vacuum, 47 (1996) 1061.CrossRefGoogle Scholar
  28. 28.
    G. Dollinger, C.M. Frey, A. Bergmaier and T. Fastermann, Nucl. Instr. and Meth., B 136–138 (1998) 603.Google Scholar
  29. 29.
    A. Tripathi, S. Mandal, D.O. Kataria, D.K. Avasthi and S.K. Datta, Nucl. Instr. and Meth., B 129 (1997) 423.ADSGoogle Scholar
  30. 30.
    D. Bromley (Ed.), Treatise on Heavy Ion Science, Plenum Press, New York (1984).Google Scholar
  31. 31.
    D.K. Avasthi, W. Assmann, H. Nolte, H.D. Mieskes, H. Huber, E.T. Subramaniyam, A. Tripathi and S. Ghosh, Nucl. Instr. and Meth., B 156 (1999) 143.ADSGoogle Scholar
  32. 32.
    D.K. Avasthi, W. Assmann, H. Nolte, H.D. Mieskes, S. Ghosh and N.C. Mishra, Nucl. Instr. and Meth., B 166–167 (2000) 345.Google Scholar
  33. 33.
    S.A. Khan, M. Kumar and D.K. Avasthi, Nucl. Instr. and Meth., B 266 (2008) 1912.ADSGoogle Scholar
  34. 34.
    D.K. Avasthi, S. Ghosh, S.K. Srivastava and W. Assmann, Nucl. Instr. and Meth., B 219–220 (2004) 206.Google Scholar
  35. 35.
    M. Copel, IBM Journal of Research & Development, 44 (2000) 571.CrossRefGoogle Scholar
  36. 36.
    E.P. Gusev, M. Copel, E. Cartier, I.J.R. Baumvol, C. Krug and M.A. Gribelyuk, Appl. Phys. Lett., 76 (2000) 176.ADSCrossRefGoogle Scholar
  37. 37.
    T. Kobayashi, G. Dorenbos, S. Shimoda, M. Iwaki and M. Aono, Nucl. Instr. and Meth., B 118 (1996) 584.ADSGoogle Scholar
  38. 38.
    M. Aono, Nucl. Instr. and Meth., B 2 (1984) 374.ADSGoogle Scholar
  39. 39.
    Horst Niehus, Werner Heiland and Edmund Taglauer, Surface Science Reports, 17 (1993) 213.ADSCrossRefGoogle Scholar
  40. 40.
    H. Niehus, Nucl. Instr. and Meth., B 33 (1988) 876.ADSGoogle Scholar
  41. 41.
    R.S. Williams and J.A. Yarmoff, Nucl. Instr. and Meth., B 218 (1983) 235.Google Scholar
  42. 42.
    A.V. Mijiritskii, U. Wahl, M.H. Langelaar, D.O. Boerma, Nucl. Instr. and Meth., B 136–138 (1998) 1097.Google Scholar
  43. 43.
    W.A. Lanford, Solar Cells, 2 (1980) 351.CrossRefGoogle Scholar
  44. 44.
    K. Shikano, H. Yonezawa and T. Shigematsu, Journal of Radioanalytical and Nuclear Chemistry, 167 (1993) 81.CrossRefGoogle Scholar
  45. 45.
    David C. Rididle and Emile A. Schweikert, Anal. Chem., 46 (1974) 395.CrossRefGoogle Scholar
  46. 46.
    A.E. Litherland, Nucl. Instr. and Meth., B 5 (1984) 100.ADSGoogle Scholar
  47. 47.
    M. Suter, Nucl. Instr. and Meth., B 223–224 (2004) 139.Google Scholar
  48. 48.
    K. Knie, G. Korschinek, T. Faestermann, E.A. Dorfi, G. Rugel and A. Wallner, Phys. Rev. Lett., 93 (2004) 171103.ADSCrossRefGoogle Scholar
  49. 49.
    David Fink, Nucl. Instr. and Meth., B 268 (2010) 1334.ADSGoogle Scholar

Copyright information

© Capital Publishing Company 2011

Authors and Affiliations

  • D. K. Avasthi
    • 1
  • G. K. Mehta
    • 1
  1. 1.Inter University Accelerator CentreNew DelhiIndia

Personalised recommendations