Skip to main content

Optical Detection of Non-amplified Genomic DNA

  • Chapter
  • First Online:
Detection of Non-Amplified Genomic DNA

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

Nucleic acid sequences are unique to every living organisms including animals, plants and even bacteria and virus, which provide a practical molecular target for the identification and diagnosis of various diseases. DNA contains heterocyclic rings that has inherent optical absorbance at 260 nm, which is widely used to quantify single and double stranded DNA in biology. However, this simple quantification method could not differentiate sequences; therefore it is not suitable for sequence-specific analyte detection. In addition to a few exceptions such as chiral-related circular dichroism spectra, DNA hybridization does not produce significant changes in optical signals, thus an optical label is generally needed for sequence-specific DNA detection with optical means. During the last two decades, we have witnessed explosive progress in the area of optical DNA detection, especially with the help of simultaneously rapidly developed nanomaterials. In this chapter, we will summarize recent advances in optical DNA detection including colorimetric, fluorescent, luminescent, surface plasmon resonance (SPR) and Raman scattering assays. Challenges and problems remained to be addressed are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sassolas, A., Leca-Bouvier, B.D., Blum, L.J.: DNA biosensors and microarrays. Chem. Rev. 108, 109–139 (2008)

    Google Scholar 

  2. Cosnier, S., Mailley, P.: Recent advances in DNA sensors. Analyst 133, 984–991 (2008)

    ADS  Google Scholar 

  3. Vercoutere, W., Akeson, M.: Biosensors for DNA sequence detection. Curr. Opin. Chem. Biol. 6, 816–822 (2002)

    Google Scholar 

  4. Teles, F.R.R., Fonseca, L.R.: Trends in DNA biosensors. Talanta 77, 606–623 (2008)

    Google Scholar 

  5. Song, S.P., Qin, Y., He, Y., Huang, Q., Fan, C.H., Chen, H.Y.: Functional nanoprobes for ultrasensitive detection of biomolecules. Chem. Soc. Rev. 39, 4234–4243 (2010)

    Google Scholar 

  6. Li, D., Song, S.P., Fan, C.H.: Target-responsive structural switching for nucleic acid-based sensors. Acc. Chem. Res. 43, 631–641 (2010)

    Google Scholar 

  7. Rosi, N.L., Mirkin, C.A.: Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005)

    Google Scholar 

  8. Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L., Mirkin, C.A.: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997)

    Google Scholar 

  9. Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996)

    ADS  Google Scholar 

  10. Wilson, R.: The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 37, 2028–2045 (2008)

    Google Scholar 

  11. Edwards, P.P., Thomas, J.M.: Gold in a metallic divided state – from Faraday to present-day nanoscience. Angew. Chem. Int. Ed. 46, 5480–5486 (2007)

    Google Scholar 

  12. Reynolds, R.A., Mirkin, C.A., Letsinger, R.L.: Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J. Am. Chem. Soc. 122, 3795–3796 (2000)

    Google Scholar 

  13. Jin, R.C., Wu, G.S., Li, Z., Mirkin, C.A., Schatz, G.C.: What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125, 1643–1654 (2003)

    Google Scholar 

  14. Zhao, W., Brook, M.A., Li, Y.F.: Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 9, 2363–2371 (2008)

    Google Scholar 

  15. Dai, Z., Zhang, J.M., Dong, Q.X., Guo, N., Xu, S.C., Sun, B., Bu, Y.H.: Adaption of Au nanoparticles and CdTe quantum dots in DNA detection. Chin. J. Chem. Eng. 15, 791–794 (2007)

    Google Scholar 

  16. Taton, T.A., Mirkin, C.A., Letsinger, R.L.: Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000)

    ADS  Google Scholar 

  17. Li, H.X., Rothberg, L.: Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA 101, 14036–14039 (2004)

    ADS  Google Scholar 

  18. Li, H.X., Rothberg, L.: Detection of specific sequences in RNA using differential adsorption of single-stranded oligonucleotides on gold nanoparticles. Anal. Chem. 77, 6229–6233 (2005)

    Google Scholar 

  19. Li, H.X., Rothberg, L.J.: Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J. Am. Chem. Soc. 126, 10958–10961 (2004)

    Google Scholar 

  20. Wang, L.H., Liu, X.F., Hu, X.F., Song, S.P., Fan, C.H.: Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem. Commun. 3780–3782 (2006)

    Google Scholar 

  21. Wang, J., Wang, L.H., Liu, X.F., Liang, Z.Q., Song, S.P., Li, W.X., Li, G.X., Fan, C.H.: A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv. Mater. 19, 3943–3946 (2007)

    Google Scholar 

  22. Zhang, J., Wang, L.H., Pan, D., Song, S.P., Boey, F.Y.C., Zhang, H., Fan, C.H.: Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 4, 1196–1200 (2008)

    Google Scholar 

  23. Tyagi, S., Kramer, F.R.: Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308 (1996)

    Google Scholar 

  24. Wang, K.M., Tang, Z.W., Yang, C.Y.J., Kim, Y.M., Fang, X.H., Li, W., Wu, Y.R., Medley, C.D., Cao, Z.H., Li, J., Colon, P., Lin, H., Tan, W.H.: Molecular engineering of DNA: molecular beacons. Angew. Chem. Int. Ed. 48, 856–870 (2009)

    Google Scholar 

  25. Tan, W.H., Wang, K.M., Drake, T.J.: Molecular beacons. Curr. Opin. Chem. Biol. 8, 547–553 (2004)

    Google Scholar 

  26. Marras, S.A.E., Tyagi, S., Kramer, F.R.: Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes. Clin. Chim. Acta 363, 48–60 (2006)

    Google Scholar 

  27. Whitcombe, D., Theaker, J., Guy, S.P., Brown, T., Little, S.: Detection of PCR products using self-probing amplicons and fluorescence. Nat. Biotechnol. 17, 804–807 (1999)

    Google Scholar 

  28. Wittwer, C.T., Herrmann, M.G., Gundry, C.N., Elenitoba-Johnson, K.S.J.: Real-time multiplex PCR assays. Methods 25, 430–442 (2001)

    Google Scholar 

  29. Wabuyele, M.B., Farquar, H., Stryjewski, W., Hammer, R.P., Soper, S.A., Cheng, Y.W., Barany, F.: Approaching real-time molecular diagnostics: single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes. J. Am. Chem. Soc. 125, 6937–6945 (2003)

    Google Scholar 

  30. Wong, M.L., Medrano, J.F.: Real-time PCR for mRNA quantitation. Biotechniques 39, 75–85 (2005)

    Google Scholar 

  31. Santangelo, P.J., Nix, B., Tsourkas, A., Bao, G.: Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res. 32(9) (2004)

    Google Scholar 

  32. Bratu, D.P., Cha, B.J., Mhlanga, M.M., Kramer, F.R., Tyagi, S.: Visualizing the distribution and transport of mRNAs in living cells. Proc. Natl. Acad. Sci. USA 100, 13308–13313 (2003)

    ADS  Google Scholar 

  33. Kiesling, T., Cox, K., Davidson, E.A., Dretchen, K., Grater, G., Hibbard, S., Lasken, R.S., Leshin, J., Skowronski, E., Danielsen, M.: Sequence specific detection of DNA using nicking endonuclease signal amplification (NESA). Nucleic Acids Res. 35, 9 (2007)

    Google Scholar 

  34. Li, J.W.J., Chu, Y.Z., Lee, B.Y.H., Xie, X.L.S.: Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucleic Acids Res. 36, 17 (2008)

    Google Scholar 

  35. Xu, W., Xue, X.J., Li, T.H., Zeng, H.Q., Liu, X.G.: Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew. Chem. Int. Ed. 48, 6849–6852 (2009)

    Google Scholar 

  36. Zhou, B.J., Ma, Y.J., Wu, H.P., Zhou, G.H.: Ultrasensitive DNA detection by cascade enzymatic signal amplification based on Afu Flap endonuclease coupled with nicking endonuclease. Angew. Chem. Int. Ed. 50, 7395–7398 (2011)

    Google Scholar 

  37. Zuo, X.L., Xia, F., Xiao, Y., Plaxco, K.W.: Sensitive and selective amplified fluorescence DNA detection based on Exonuclease III-aided target recycling. J. Am. Chem. Soc. 132, 1816–1818 (2010)

    Google Scholar 

  38. Zhao, X.J., Bagwe, R.P., Tan, W.H.: Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Adv. Mater. 16, 173–176 (2004)

    Google Scholar 

  39. Yan, J.L., Estevez, M.C., Smith, J.E., Wang, K.M., He, X.X., Wang, L., Tan, W.H.: Dye-doped nanoparticles for bioanalysis. Nano Today 2, 44–50 (2007)

    Google Scholar 

  40. Zhao, X.J., Tapec-Dytioco, R., Tan, W.H.: Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J. Am. Chem. Soc. 125, 11474–11475 (2003)

    Google Scholar 

  41. Zhou, X.C., Zhou, J.Z.: Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Anal. Chem. 76, 5302–5312 (2004)

    Google Scholar 

  42. Yin, Y., Alivisatos, A.P.: Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664–670 (2005)

    ADS  Google Scholar 

  43. Peng, Z.A., Peng, X.G.: Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 (2001)

    Google Scholar 

  44. Algar, W.R., Massey, M., Krull, U.J.: The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics. TrAC Trends Anal. Chem. 28, 292–306 (2009)

    Google Scholar 

  45. Sutherland, A.J.: Quantum dots as luminescent probes in biological systems. Curr. Opin. Solid State Mater. Sci. 6, 365–370 (2002)

    ADS  Google Scholar 

  46. Han, M.Y., Gao, X.H., Su, J.Z., Nie, S.: Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001)

    Google Scholar 

  47. Clapp, A.R., Medintz, I.L., Mattoussi, H.: Forster resonance energy transfer investigations using quantum-dot fluorophores. ChemPhysChem 7, 47–57 (2006)

    Google Scholar 

  48. Clapp, A.R., Medintz, I.L., Uyeda, H.T., Fisher, B.R., Goldman, E.R., Bawendi, M.G., Mattoussi, H.: Quantum dot-based multiplexed fluorescence resonance energy transfer. J. Am. Chem. Soc. 127, 18212–18221 (2005)

    Google Scholar 

  49. Kim, J.H., Morikis, D., Ozkan, M.: Adaptation of inorganic quantum dots for stable molecular beacons. Sens. Actuator B Chem. 102, 315–319 (2004)

    Google Scholar 

  50. Algar, W.R., Krull, U.J.: Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET). Anal. Chim. Acta 581, 193–201 (2007)

    Google Scholar 

  51. Zhang, C.Y., Yeh, H.C., Kuroki, M.T., Wang, T.H.: Single-quantum-dot-based DNA nanosensor. Nat. Mater. 4, 826–831 (2005)

    ADS  Google Scholar 

  52. Peng, H., Zhang, L.J., Kjallman, T.H.M., Soeller, C., Travas-Sejdic, J.: DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA. J. Am. Chem. Soc. 129, 3048–3049 (2007)

    Google Scholar 

  53. Su, Y.Y., Hu, M., Fan, C.H., He, Y., Li, Q.N., Li, W.X., Wang, L.H., Shen, P.P., Huang, Q.: The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. Biomaterials 31, 4829–4834 (2010)

    Google Scholar 

  54. Jurbergs, D., Rogojina, E., Mangolini, L., Kortshagen, U.: Silicon nanocrystals with ensemble quantum yields exceeding 60 %. Appl. Phys. Lett. 88, 23316 (2006)

    Google Scholar 

  55. He, Y., Kang, Z.H., Li, Q.S., Tsang, C.H.A., Fan, C.H., Lee, S.T.: Ultrastable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angew. Chem. Int. Ed. 48, 128–132 (2009)

    Google Scholar 

  56. He, Y., Su, Y.Y., Yang, X.B., Kang, Z.H., Xu, T.T., Zhang, R.Q., Fan, C.H., Lee, S.T.: Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging. J. Am. Chem. Soc. 131, 4434–4438 (2009)

    Google Scholar 

  57. Zijlmans, H., Bonnet, J., Burton, J., Kardos, K., Vail, T., Niedbala, R.S., Tanke, H.J.: Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal. Biochem. 267, 30–36 (1999)

    Google Scholar 

  58. Kamimura, M., Miyamoto, D., Saito, Y., Soga, K., Nagasaki, Y.: Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling. Langmuir 24, 8864–8870 (2008)

    Google Scholar 

  59. Emoto, K., Nagasaki, Y., Kataoka, K.: Coating of surfaces with stabilized reactive micelles from poly(ethylene glycol)-poly(DL-lactic acid) block copolymer. Langmuir 15, 5212–5218 (1999)

    Google Scholar 

  60. van de Rijke, F., Zijlmans, H., Li, S., Vail, T., Raap, A.K., Niedbala, R.S., Tanke, H.J.: Up-converting phosphor reporters for nucleic acid microarrays. Nat. Biotechnol. 19, 273–276 (2001)

    Google Scholar 

  61. Chen, Z.G., Chen, H.L., Hu, H., Yu, M.X., Li, F.Y., Zhang, Q., Zhou, Z.G., Yi, T., Huang, C.H.: Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 130, 3023–3029 (2008)

    Google Scholar 

  62. Dulkeith, E., Morteani, A.C., Niedereichholz, T., Klar, T.A., Feldmann, J., Levi, S.A., van Veggel, F., Reinhoudt, D.N., Moller, M., Gittins, D.I.: Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys. Rev. Lett. 89, 4 (2002)

    Google Scholar 

  63. Das, P.C., Puri, A.: Energy flow and fluorescence near a small metal particle. Phys. Rev. B 65, 8 (2002)

    Google Scholar 

  64. Fan, C.H., Wang, S., Hong, J.W., Bazan, G.C., Plaxco, K.W., Heeger, A.J.: Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc. Natl. Acad. Sci. USA 100, 6297–6301 (2003)

    ADS  Google Scholar 

  65. Kamat, P.V., Barazzouk, S., Hotchandani, S.: Electrochemical modulation of fluorophore emission on a nanostructured gold film. Angew. Chem. Int. Ed. 41, 2764–2767 (2002)

    Google Scholar 

  66. Dubertret, B., Calame, M., Libchaber, A.J.: Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat. Biotechnol. 19, 365–370 (2001)

    Google Scholar 

  67. Maxwell, D.J., Taylor, J.R., Nie, S.M.: Self-assembled nanoparticle probes for recognition and detection of biomolecules. J. Am. Chem. Soc. 124, 9606–9612 (2002)

    Google Scholar 

  68. Song, S.P., Liang, Z.Q., Zhang, J., Wang, L.H., Li, G.X., Fan, C.H.: Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angew. Chem. Int. Ed. 48, 8670–8674 (2009)

    Google Scholar 

  69. Pons, T., Medintz, I.L., Sapsford, K.E., Higashiya, S., Grimes, A.F., English, D.S., Mattoussi, H.: On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. Nano Lett. 7, 3157–3164 (2007)

    ADS  Google Scholar 

  70. Zheng, M., Jagota, A., Semke, E.D., Diner, B.A., McLean, R.S., Lustig, S.R., Richardson, R.E., Tassi, N.G.: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003)

    ADS  Google Scholar 

  71. Zheng, M., Jagota, A., Strano, M.S., Santos, A.P., Barone, P., Chou, S.G., Diner, B.A., Dresselhaus, M.S., McLean, R.S., Onoa, G.B., Samsonidze, G.G., Semke, E.D., Usrey, M., Walls, D.J.: Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003)

    ADS  Google Scholar 

  72. Liang, F., Chen, B.: A review on biomedical applications of single-walled carbon nanotubes. Curr. Med. Chem. 17, 10–24 (2010)

    MathSciNet  Google Scholar 

  73. Zhu, Z., Yang, R.H., You, M.X., Zhang, X.L., Wu, Y.R., Tan, W.H.: Single-walled carbon nanotube as an effective quencher. Anal. Bioanal. Chem. 396, 73–83 (2010)

    Google Scholar 

  74. Yang, R.H., Tang, Z.W., Yan, J.L., Kang, H.Z., Kim, Y.M., Zhu, Z., Tan, W.H.: Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. Anal. Chem. 80, 7408–7413 (2008)

    Google Scholar 

  75. Yang, R.H., Jin, J.Y., Chen, Y., Shao, N., Kang, H.Z., Xiao, Z., Tang, Z.W., Wu, Y.R., Zhu, Z., Tan, W.H.: Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. J. Am. Chem. Soc. 130, 8351–8358 (2008)

    Google Scholar 

  76. Liu, Y., Wang, Y.X., Jin, J.Y., Wang, H., Yang, R.H., Tan, W.H.: Fluorescent assay of DNA hybridization with label-free molecular switch: reducing background-signal and improving specificity by using carbon nanotubes. Chem. Commun. 665–667 (2009)

    Google Scholar 

  77. Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009)

    Google Scholar 

  78. Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Google Scholar 

  79. Swathi, R.S., Sebastian, K.L.: Resonance energy transfer from a dye molecule to graphene. J. Chem. Phys. 129, 9 (2008)

    Google Scholar 

  80. He, S.J., Song, B., Li, D., Zhu, C.F., Qi, W.P., Wen, Y.Q., Wang, L.H., Song, S.P., Fang, H.P., Fan, C.H.: A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 20, 453–459 (2010)

    Google Scholar 

  81. Lu, C.H., Yang, H.H., Zhu, C.L., Chen, X., Chen, G.N.: A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 48, 4785–4787 (2009)

    Google Scholar 

  82. Wang, Y., Li, Z.H., Hu, D.H., Lin, C.T., Li, J.H., Lin, Y.H.: Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132, 9274–9276 (2010)

    Google Scholar 

  83. Feng, L.Z., Zhang, S.A., Liu, Z.: Graphene based gene transfection. Nanoscale 3, 1252–1257 (2011)

    ADS  Google Scholar 

  84. Peng, C., Hu, W.B., Zhou, Y.T., Fan, C.H., Huang, Q.: Intracellular imaging with a graphene-based fluorescent probe. Small 6, 1686–1692 (2010)

    Google Scholar 

  85. Gerardi, R.D., Barnett, N.W., Lewis, S.W.: Analytical applications of tris(2,2′-bipyridyl)ruthenium(III) as a chemiluminescent reagent. Anal. Chim. Acta 378, 1–41 (1999)

    Google Scholar 

  86. Dodeigne, C., Thunus, L., Lejeune, R.: Chemiluminescence as a diagnostic tool. A review. Talanta 51, 415–439 (2000)

    Google Scholar 

  87. Marquette, C.A., Blum, L.J.: Electro-chemiluminescent biosensing. Anal. Bioanal. Chem. 390, 155–168 (2008)

    Google Scholar 

  88. Kricka, L.J.: Clinical applications of chemiluminescence. Anal. Chim. Acta 500, 279–286 (2003)

    Google Scholar 

  89. Aslan, K., Geddes, C.D.: Metal-enhanced chemiluminescence: advanced chemiluminescence concepts for the 21st century. Chem. Soc. Rev. 38, 2556–2564 (2009)

    Google Scholar 

  90. Lin, J.M., Shan, X.Q., Hanaoka, S., Yamada, M.: Luminol chemiluminescence in unbuffered solutions with a cobalt(II)-ethanolamine complex immobilized on resin as catalyst and its application to analysis. Anal. Chem. 73, 5043–5051 (2001)

    Google Scholar 

  91. Li, Z.P., Li, K.A., Tong, S.Y.: Study of the catalytic effect of copper(II)-protein complexes on luminol-H2O2 chemiluminescence reaction and its analytical application. Anal. Lett. 32, 901–913 (1999)

    Google Scholar 

  92. Zhang, S.S., Zhong, H., Ding, C.F.: Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles. Anal. Chem. 80, 7206–7212 (2008)

    Google Scholar 

  93. Niazov, T., Pavlov, V., Xiao, Y., Gill, R., Willner, I.: DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity. Nano Lett. 4, 1683–1687 (2004)

    ADS  Google Scholar 

  94. Wang, Z.P., Hu, J.Q., Jin, Y., Yao, X., Li, J.H.: In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label. Clin. Chem. 52, 1958–1961 (2006)

    Google Scholar 

  95. Qi, Y.Y., Li, B.X., Zhang, Z.J.: Label-free and homogeneous DNA hybridization detection using gold nanoparticles-based chemiluiminescence system. Biosens. Bioelectron. 24, 3581–3586 (2009)

    Google Scholar 

  96. Nelson, N.C., BenCheikh, A., Matsuda, E., Becker, M.M.: Simultaneous detection of multiple nucleic acid targets in a homogeneous format. Biochemistry 35, 8429–8438 (1996)

    Google Scholar 

  97. Nelson, N.C., Kacian, D.L.: Chemiluminescent DNA probes-A comparison of the acridinium and dioxetane detection systems and their use in clinical diagnostic assays. Clin. Chim. Acta 194, 73–90 (1990)

    Google Scholar 

  98. Nelson, N.C., Hammond, P.W., Matsuda, E., Goud, A.A., Becker, M.M.: Detection of all single-base mismatches in solution by chemiluminescence. Nucleic Acids Res. 24, 4998–5003 (1996)

    Google Scholar 

  99. Yin, X.B., Dong, S.J., Wang, E.K.: Analytical applications of the electrochemiluminescence of tris (2.2′-bipyridyl) ruthenium and its derivatives. TrAC Trends Anal. Chem. 23, 432–441 (2004)

    Google Scholar 

  100. Hu, L.Z., Xu, G.B.: Applications and trends in electrochemiluminescence. Chem. Soc. Rev. 39, 3275–3304 (2010)

    Google Scholar 

  101. Tokel, N.E., Bard, A.J.: Electrogenerated chemiluminescence. 9. electrochemistry and emission from systems containing Tris(2,2′-bipyridine)Ruthenium(II) dichloride. J. Am. Chem. Soc 94, 2862–2863 (1972)

    Google Scholar 

  102. Zu, Y.B., Bard, A.J.: Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2′)bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity. Anal. Chem. 72, 3223–3232 (2000)

    Google Scholar 

  103. Kanoufi, F., Zu, Y.B., Bard, A.J.: Homogeneous oxidation of trialkylamines by metal complexes and its impact on electrogenerated chemiluminescence in the trialkylamine/Ru(bpy) (2+)(3) system. J. Phys. Chem. B 105, 210–216 (2001)

    Google Scholar 

  104. Miao, W.J.: Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 108, 2506–2553 (2008)

    Google Scholar 

  105. Xu, X.H., Bard, A.J.: Immobilization and hybridization of DNA and Aluminum (III) alkanebisphosphonate thin-film with electrogenerated chemiluminescent detection. J. Am. Chem. Soc. 117, 2627–2631 (1995)

    Google Scholar 

  106. Miao, W.J., Bard, A.J.: Electrogenerated chemiluminescence. 77. DNA hybridization detection at high amplification with [Ru(bpy)(3)](2+)-containing microspheres. Anal. Chem. 76, 5379–5386 (2004)

    Google Scholar 

  107. Miao, W.J., Bard, A.J.: Electrogenerated chemluminescence. 72. Determination of immobilized DNA and C-reactive protein on Au(111) electrodes using Tris(2,2′-bipyridyl)ruthenium(II) labels. Anal. Chem. 75, 5825–5834 (2003)

    Google Scholar 

  108. Lo, W.Y., Baeumner, A.J.: Evaluation of internal standards in a competitive nucleic acid sequence-based amplification assay. Anal. Chem. 79, 1386–1392 (2007)

    Google Scholar 

  109. Lo, W.Y., Baeumner, A.J.: RNA internal standard synthesis by nucleic acid sequence-based amplification for competitive quantitative amplification reactions. Anal. Chem. 79, 1548–1554 (2007)

    Google Scholar 

  110. Zhang, J., Qi, H.L., Li, Y., Yang, J., Gao, Q., Zhang, C.X.: Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex. Anal. Chem. 80, 2888–2894 (2008)

    Google Scholar 

  111. Sun, X.P., Du, Y., Dong, S.J., Wang, E.K.: Method for effective immobilization of Ru(bpy) 2+3 on an electrode surface for solid-state electrochemiluminescene detection. Anal. Chem. 77, 8166–8169 (2005)

    Google Scholar 

  112. Wang, H., Zhang, C.X., Li, Y., Qi, H.L.: Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes. Anal. Chim. Acta 575, 205–211 (2006)

    Google Scholar 

  113. Zhang, J., Song, S.P., Zhang, L.Y., Wang, L.H., Wu, H.P., Pan, D., Fan, C.H.: Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J. Am. Chem. Soc. 128, 8575–8580 (2006)

    Google Scholar 

  114. Lee, J.G., Yun, K., Lim, G.S., Lee, S.E., Kim, S., Park, J.K.: DNA biosensor based on the electrochemiluminescence of Ru(bpy) (2+)(3) with DNA-binding intercalators. Bioelectrochemistry 70, 228–234 (2007)

    Google Scholar 

  115. Jiang, H., Ju, H.X.: Enzyme-quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates. Chem. Commun. 404–406 (2007)

    Google Scholar 

  116. Jiang, H., Ju, H.X.: Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system. Anal. Chem. 79, 6690–6696 (2007)

    Google Scholar 

  117. Liu, X., Jiang, H., Lei, J.P., Ju, H.X.: Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal. Chem. 79, 8055–8060 (2007)

    Google Scholar 

  118. Hu, X.F., Wang, R.Y., Ding, Y., Zhang, X.L., Jin, W.R.: Electrochemiluminescence of CdTe quantum dots as labels at nanoporous gold leaf electrodes for ultrasensitive DNA analysis. Talanta 80, 1737–1743 (2010)

    Google Scholar 

  119. Fivash, M., Towler, E.M., Fisher, R.J.: BIAcore for macromolecular interaction. Curr. Opin. Biotechnol. 9, 97–101 (1998)

    Google Scholar 

  120. Malmborg, A.C., Borrebaeck, C.A.K.: BIAcore as a tool in antibody engineering. J. Immunol. Methods 183, 7–13 (1995)

    Google Scholar 

  121. Campbell, C.T., Kim, G.: SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28, 2380–2392 (2007)

    Google Scholar 

  122. Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008)

    Google Scholar 

  123. Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors: review. Sens. Actuator B Chem. 54, 3–15 (1999)

    Google Scholar 

  124. Persson, B., Stenhag, K., Nilsson, P., Larsson, A., Uhlen, M., Nygren, P.A.: Analysis of oligonucleotide probe affinities using surface plasmon resonance: a means for mutational scanning. Anal. Biochem. 246, 34–44 (1997)

    Google Scholar 

  125. Nilsson, P., Persson, B., Uhlen, M., Nygren, P.A.: Real-time monitoring of DNA manipulations using biosensor technology. Anal. Biochem. 224, 400–408 (1995)

    Google Scholar 

  126. He, L., Musick, M.D., Nicewarner, S.R., Salinas, F.G., Benkovic, S.J., Natan, M.J., Keating, C.D.: Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J. Am. Chem. Soc. 122, 9071–9077 (2000)

    Google Scholar 

  127. Rothenhausler, B., Knoll, W.: Surface-plasmon microscopy. Nature 332, 615–617 (1988)

    ADS  Google Scholar 

  128. Shumaker-Parry, J.S., Zareie, M.H., Aebersold, R., Campbell, C.T.: Microspotting streptavidin and double-stranded DNA Arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy. Anal. Chem. 76, 918–929 (2004)

    Google Scholar 

  129. Brockman, J.M., Nelson, B.P., Corn, R.M.: Surface plasmon resonance imaging measurements of ultrathin organic films. Annu. Rev. Phys. Chem. 51, 41–63 (2000)

    ADS  Google Scholar 

  130. Thiel, A.J., Frutos, A.G., Jordan, C.E., Corn, R.M., Smith, L.M.: In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces. Anal. Chem. 69, 4948–4956 (1997)

    Google Scholar 

  131. Nelson, B.P., Grimsrud, T.E., Liles, M.R., Goodman, R.M., Corn, R.M.: Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal. Chem. 73, 1–7 (2001)

    Google Scholar 

  132. Jordan, C.E., Frutos, A.G., Thiel, A.J., Corn, R.M.: Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Anal. Chem. 69, 4939–4947 (1997)

    Google Scholar 

  133. Lee, H.J., Goodrich, T.T., Corn, R.M.: SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films. Anal. Chem. 73, 5525–5531 (2001)

    Google Scholar 

  134. Lee, H.J., Li, Y., Wark, A.W., Corn, R.M.: Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays. Anal. Chem. 77, 5096–5100 (2005)

    Google Scholar 

  135. Nie, S.M., Emery, S.R.: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)

    Google Scholar 

  136. Vodinh, T., Houck, K., Stokes, D.L.: PROBES surface-enhanced Raman gene probes. Anal. Chem. 66, 3379–3383 (1994)

    Google Scholar 

  137. Campion, A., Kambhampati, P.: Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–250 (1998)

    Google Scholar 

  138. Graham, D.: The next generation of advanced spectroscopy: surface enhanced Raman scattering from metal nanoparticles. Angew. Chem. Int. Ed. 49, 9325–9327 (2010)

    Google Scholar 

  139. Graham, D., Faulds, K.: Quantitative SERRS for DNA sequence analysis. Chem. Soc. Rev. 37, 1042–1051 (2008)

    Google Scholar 

  140. Cao, Y.W.C., Jin, R.C., Mirkin, C.A.: Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002)

    ADS  Google Scholar 

  141. Braun, G., Lee, S.J., Dante, M., Nguyen, T.Q., Moskovits, M., Reich, N.: Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J. Am. Chem. Soc. 129, 6378–6379 (2007)

    Google Scholar 

  142. Kang, T., Yoo, S.M., Yoon, I., Lee, S.Y., Kim, B.: Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett. 10, 1189–1193 (2010)

    ADS  Google Scholar 

  143. He, Y., Su, S., Xu, T.T., Zhong, Y.L., Antonio Zapien, J., Li, J., Fan, C.H., Lee, S.-T.: Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today 6, 122–130 (2011)

    Google Scholar 

  144. Thompson, D.G., Enright, A., Faulds, K., Smith, W.E., Graham, D.: Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Anal. Chem. 80, 2805–2810 (2008)

    Google Scholar 

  145. MacAskill, A., Crawford, D., Graham, D., Faulds, K.: DNA sequence detection using surface-enhanced resonance Raman spectroscopy in a homogeneous multiplexed assay. Anal. Chem. 81, 8134–8140 (2009)

    Google Scholar 

  146. Graham, D., Stevenson, R., Thompson, D.G., Barrett, L., Dalton, C., Faulds, K.: Combining functionalized nanoparticles and SERS for the detection of DNA relating to disease. Faraday Discuss. 149, 291–299 (2010)

    ADS  Google Scholar 

  147. Graham, D., Thompson, D.G., Smith, W.E., Faulds, K.: Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat. Nanotechnol. 3, 548–551 (2008)

    ADS  Google Scholar 

  148. Wabuyele, M.B., Vo-Dinh, T.: Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes. Anal. Chem. 77, 7810–7815 (2005)

    Google Scholar 

  149. Harpster, M.H., Zhang, H., Sankara-Warrier, A.K., Ray, B.H., Ward, T.R., Kollmar, J.P., Carron, K.T., Mecham, J.O., Corcoran, R.C., Wilson, W.C., Johnson, P.A.: SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label. Biosens. Bioelectron. 25, 674–681 (2009)

    Google Scholar 

  150. Zhang, Z., Wang, Y., Fan, C.H., Li, C., Li, Y., Qian, L.L., Fu, Y.M., Shi, Y.Y., Hu, J., He, L.: Asymmetric DNA origami for spatially addressable and index-free solution-phase DNA chips. Adv. Mater. 22, 2672–2675 (2010)

    Google Scholar 

  151. Ke, Y.G., Lindsay, S., Chang, Y., Liu, Y., Yan, H.: Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science 319, 180–183 (2008)

    ADS  Google Scholar 

  152. Husale, S., Persson, H.H.J., Sahin, O.: DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature 462, 1075–1078 (2009)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhai Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, D., Fan, C. (2012). Optical Detection of Non-amplified Genomic DNA. In: Spoto, G., Corradini, R. (eds) Detection of Non-Amplified Genomic DNA. Soft and Biological Matter. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1226-3_6

Download citation

Publish with us

Policies and ethics