Skip to main content

Engineered Nanostructures for the Ultrasensitive DNA Detection

  • Chapter
  • First Online:
Detection of Non-Amplified Genomic DNA

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

Coupled with nanotechnologies, a wide variety of DNA sensing methods have been developed to achieve ultrahigh sensitivity and selectivity without the aid of enzymatic amplification procedures or complicated assay procedures. Structurally engineered nanomaterials have several useful aspects including their unique optical properties depending on size, shape, composition and structural details and electrical properties, which have been translated into various signal transduction modes. However, the most important challenge in DNA detection assay to compete with or complement the polymerase chain reaction (PCR) is matching the sensitivity of PCR, which can detect 10–100 copies in whole sample via various non-enzymatic amplification strategies. Here, we introduce recent advances in engineered nanostructure-based DNA detection methods that show potential for PCR-like sensitivity and can address the existing issues of conventional DNA detection assays. The basic principles, advantages, and limitations of engineered nanostructure-amplified DNA detection methods will be introduced and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shim, S.-Y., Lim, D.-K., Nam, J.-M.: Ultrasensitive optical biodiagnostic methods using metallic nanoparticles. Nanomedicine 3(2), 215–232 (2008)

    Article  Google Scholar 

  2. Peng, H.-I., Miller, B.L.: Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles. Analyst 136(3), 436–447 (2011)

    Article  ADS  Google Scholar 

  3. Jeon, J., Lim, D.-K., Nam, J.-M.: Functional nanomaterial-based amplified bio-detection strategies. J. Mater. Chem. 19(15), 2107–2117 (2009)

    Article  Google Scholar 

  4. Wittenberg, N.J., Haynes, C.L.: Using nanoparticles to push the limits of detection. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(2), 237–254 (2009)

    Article  Google Scholar 

  5. Selhuber-Unkel, C., et al.: Quantitative optical trapping of single gold nanorods. Nano Lett. 8(9), 2998–3003 (2008)

    Article  ADS  Google Scholar 

  6. Khoury, C.G., Vo-Dinh, T.: Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J. Phys. Chem. C 112(48), 18849–18859 (2008)

    Google Scholar 

  7. Personick, M.L., et al.: Synthesis and isolation of {110}-faceted gold bipyramids and rhombic dodecahedra. J. Am. Chem. Soc. 133(16), 6170–6173 (2011)

    Article  Google Scholar 

  8. Kitaygorodskiy, A., et al.: Nmr detection of single-walled carbon nanotubes in solution. J. Am. Chem. Soc. 127(20), 7517–7520 (2005)

    Article  Google Scholar 

  9. Si, Y., Samulski, E.T.: Synthesis of water soluble graphene. Nano Lett. 8(6), 1679–1682 (2008)

    Article  ADS  Google Scholar 

  10. Rosi, N.L., Mirkin, C.A.: Nanostructures in biodiagnostics. Chem. Rev. 105(4), 1547–1562 (2005)

    Article  Google Scholar 

  11. Mirkin, C.A., et al.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592), 607–609 (1996)

    Article  ADS  Google Scholar 

  12. Elghanian, R., et al.: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329), 1078–1081 (1997)

    Article  Google Scholar 

  13. Storhoff, J.J., et al.: What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 122(19), 4640–4650 (2000)

    Article  Google Scholar 

  14. Storhoff, J.J., et al.: One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120(9), 1959–1964 (1998)

    Article  Google Scholar 

  15. Storhoff, J.J., et al.: Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat. Biotechnol. 22(7), 883–887 (2004)

    Article  Google Scholar 

  16. Ling, J., et al.: Light-scattering signals from nanoparticles in biochemical assay, pharmaceutical analysis and biological imaging. TrAC Trends Anal. Chem. 28(4), 447–453 (2009)

    Article  Google Scholar 

  17. Taton, T.A., Mirkin, C.A., Letsinger, R.L.: Scanometric DNA array detection with nanoparticle probes. Science 289(5485), 1757–1760 (2000)

    Article  ADS  Google Scholar 

  18. Cao, Y.C., Jin, R., Mirkin, C.A.: Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586), 1536–1540 (2002)

    Article  ADS  Google Scholar 

  19. Park, S.-J., Taton, T.A., Mirkin, C.A.: Array-based electrical detection of DNA with nanoparticle probes. Science 295(5559), 1503–1506 (2002)

    ADS  Google Scholar 

  20. Thompson, D.G., et al.: Ultrasensitive DNA detection using oligonucleotide – silver nanoparticle conjugates. Anal. Chem. 80(8), 2805–2810 (2008)

    Article  Google Scholar 

  21. Lee, J.-S., et al.: Silver nanoparticle – oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett. 7(7), 2112–2115 (2007)

    Article  ADS  Google Scholar 

  22. Cao, Y., Jin, R., Mirkin, C.A.: DNA-modified core–shell Ag/Au nanoparticles. J. Am. Chem. Soc. 123(32), 7961–7962 (2001)

    Article  Google Scholar 

  23. Lim, D.-K., Kim, I.-J., Nam, J.-M.: DNA-embedded Au/Ag core-shell nanoparticles. Chem. Commun. 42, 5312–5314 (2008)

    Article  Google Scholar 

  24. Li, H., Rothberg, L.: Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA 101(39), 14036–14039 (2004)

    Article  ADS  Google Scholar 

  25. Xia, F., et al.: Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc. Natl. Acad. Sci. USA 107(24), 10837–10841 (2010)

    Article  ADS  Google Scholar 

  26. Xu, X., et al.: Homogeneous detection of nucleic acids based upon the light scattering properties of silver-coated nanoparticle probes. Anal. Chem. 79(17), 6650–6654 (2007)

    Article  Google Scholar 

  27. Nam, J.-M., Thaxton, C.S., Mirkin, C.A.: Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641), 1884–1886 (2003)

    Article  ADS  Google Scholar 

  28. Goluch, E.D., et al.: A bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip 6(10), 1293–1299 (2006)

    Article  Google Scholar 

  29. Stoeva, S.I., et al.: Multiplexed DNA detection with biobarcoded nanoparticle probes. Angew. Chem. Int. Ed. 45(20), 3303–3306 (2006)

    Article  Google Scholar 

  30. Zhang, D., Carr, D.J., Alocilja, E.C.: Fluorescent bio-barcode DNA assay for the detection of Salmonella enterica serovar Enteritidis. Biosens. Bioelectron. 24(5), 1377–1381 (2009)

    Article  Google Scholar 

  31. Nam, J.-M., Jang, K.-J., Groves, J.T.: Detection of proteins using a colorimetric bio-barcode assay. Nat. Protoc. 2(6), 1438–1444 (2007)

    Article  Google Scholar 

  32. Graham, D., et al.: Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat. Nanotechnol. 3(9), 548–551 (2008)

    Article  ADS  Google Scholar 

  33. Im, H., et al.: Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett. 10(6), 2231–2236 (2010)

    Article  ADS  Google Scholar 

  34. Kang, T., et al.: Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett. 10(4), 1189–1193 (2010)

    Article  ADS  Google Scholar 

  35. Li, W., et al.: Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 9(1), 485–490 (2008)

    Article  ADS  Google Scholar 

  36. Theiss, J., et al.: Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. Nano Lett. 10(8), 2749–2754 (2010)

    Article  ADS  Google Scholar 

  37. Qian, X., Zhou, X., Nie, S.: Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. J. Am. Chem. Soc. 130(45), 14934–14935 (2008)

    Article  Google Scholar 

  38. Johnson, D.S., et al.: Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007)

    Article  ADS  Google Scholar 

  39. Wabuyele, M.B., Vo-Dinh, T.: Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes. Anal. Chem. 77(23), 7810–7815 (2005)

    Article  Google Scholar 

  40. Huh, Y.S., et al.: Surface-enhanced Raman scattering based ligase detection reaction. J. Am. Chem. Soc. 131(6), 2208–2213 (2009)

    Article  Google Scholar 

  41. Xi, D., et al.: The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes. J. Nanopart. Res. 10(3), 393–400 (2008)

    Article  Google Scholar 

  42. Perez, J.M., et al.: Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20(8), 816–820 (2002)

    Google Scholar 

  43. Gerion, D., et al.: Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal. Chem. 75(18), 4766–4772 (2003)

    Article  Google Scholar 

  44. Wu, Z.-S., et al.: Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal. Biochem. 353(1), 22–29 (2006)

    Article  Google Scholar 

  45. Wang, H., et al.: Combination of DNA ligase reaction and gold nanoparticle-quenched fluorescent oligonucleotides: a simple and efficient approach for fluorescent assaying of single-nucleotide polymorphisms. Anal. Chem. 82(18), 7684–7690 (2010)

    Article  Google Scholar 

  46. Son, A., et al.: Rapid and quantitative DNA analysis of genetic mutations for polycystic kidney disease (PKD) using magnetic/luminescent nanoparticles. Anal. Bioanal. Chem. 390(7), 1829–1835 (2008)

    Article  Google Scholar 

  47. Malicka, J., Gryczynski, I., Lakowicz, J.R.: DNA hybridization assays using metal-enhanced fluorescence. Biochem. Biophys. Res. Commun. 306(1), 213–218 (2003)

    Article  Google Scholar 

  48. Gunnarsson, A., et al.: Single-molecule detection and mismatch discrimination of unlabeled DNA targets. Nano Lett. 8(1), 183–188 (2007)

    Article  ADS  Google Scholar 

  49. Shiddiky, M.J.A., Rahman, M.A., Shim, Y.-B.: Hydrazine-catalyzed ultrasensitive detection of DNA and proteins. Anal. Chem. 79(17), 6886–6890 (2007)

    Article  Google Scholar 

  50. Verigene System, Nanosphere, Inc., Northbrook, IL, USA. www.nanosphere.us

  51. Zhang, J., et al.: Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J. Am. Chem. Soc. 128(26), 8575–8580 (2006)

    Article  Google Scholar 

  52. Bailey, R.C., et al.: Real-time multicolor DNA detection with chemoresponsive diffraction gratings and nanoparticle probes. J. Am. Chem. Soc. 125(44), 13541–13547 (2003)

    Article  Google Scholar 

  53. Zhao, X., Tapec-Dytioco, R., Tan, W.: Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J. Am. Chem. Soc. 125(38), 11474–11475 (2003)

    Article  Google Scholar 

  54. Qin, L., et al.: Nanodisk codes. Nano Lett. 7(12), 3849–3853 (2007)

    Article  ADS  Google Scholar 

  55. Lim, D.-K., et al.: Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 9(1), 60–67 (2010)

    Article  ADS  Google Scholar 

  56. Lim, D.-K., et al.: Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 6(7), 452–460 (2011)

    Article  ADS  Google Scholar 

  57. Weizmann, Y., Chenoweth, D.M., Swager, T.M.: DNA – CNT nanowire networks for DNA detection. J. Am. Chem. Soc. 133(10), 3238–3241 (2011)

    Article  Google Scholar 

  58. Roy, S., et al.: Mass-produced nanogap sensor arrays for ultrasensitive detection of DNA. J. Am. Chem. Soc. 131(34), 12211–12217 (2009)

    Article  Google Scholar 

  59. Xiao, Y., et al.: An electrochemical sensor for single nucleotide polymorphism detection in serum based on a triple-stem DNA probe. J. Am. Chem. Soc. 131(42), 15311–15316 (2009)

    Article  Google Scholar 

  60. Lubin, A.A., et al.: Sequence-specific, electronic detection of oligonucleotides in blood, soil, and foodstuffs with the reagentless, reusable e-DNA sensor. Anal. Chem. 78(16), 5671–5677 (2006)

    Article  Google Scholar 

  61. Lubin, A.A., et al.: Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical e-DNA sensor. Anal. Chem. 81(6), 2150–2158 (2009)

    Article  Google Scholar 

  62. Gao, A., et al.: Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett. 11(9), 3974–3978 (2011)

    Article  ADS  Google Scholar 

  63. Chen, C.-P., et al.: Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor. Anal. Chem. 83(6), 1938–1943 (2011)

    Article  Google Scholar 

  64. Shendure, J., Ji, H.: Next-generation DNA sequencing. Nat. Biotechnol. 26(10), 1135–1145 (2008)

    Article  Google Scholar 

  65. Hutchison, C.A.: DNA sequencing: bench to bedside and beyond. Nucleic Acids Res. 35, 6227–6237 (2007)

    Article  Google Scholar 

  66. Shendure, J., et al.: Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5, 335–344 (2004)

    Article  Google Scholar 

  67. Agrawal, A., et al.: Counting single native biomolecules and intact viruses with color-coded nanoparticles. Anal. Chem. 78(4), 1061–1070 (2006)

    Article  Google Scholar 

  68. Liu, K.J., et al.: Decoding circulating nucleic acids in human serum using microfluidic single molecule spectroscopy. J. Am. Chem. Soc. 132(16), 5793–5798 (2010)

    Article  Google Scholar 

  69. Levene, M.J.: Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003)

    Article  ADS  Google Scholar 

  70. Li, S.-J., et al.: A nanochannel array-based electrochemical device for quantitative label-free DNA analysis. ACS Nano 4(11), 6417–6424 (2010)

    Article  Google Scholar 

  71. Menard, L.D., Ramsey, J.M.: Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. Nano Lett. 11(2), 512–517 (2010)

    Article  ADS  Google Scholar 

  72. Yang, S.Y., et al.: DNA-functionalized nanochannels for SNP detection. Nano Lett. 11(3), 1032–1035 (2011)

    Article  ADS  Google Scholar 

  73. Ivanov, A.P., et al.: DNA tunneling detector embedded in a nanopore. Nano Lett. 11(1), 279–285 (2010)

    Article  ADS  Google Scholar 

  74. Liang, X., et al.: Single sub-20 nm wide, centimeter-long nanofluidic channel fabricated by novel nanoimprint mold fabrication and direct imprinting. Nano Lett. 7(12), 3774–3780 (2007)

    Article  ADS  Google Scholar 

  75. Spiering, A., et al.: Nanopore translocation dynamics of a single DNA-bound protein. Nano Lett. 11(7), 2978–2982 (2011)

    Article  Google Scholar 

  76. McNally, B., et al.: Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett. 10(6), 2237–2244 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jwa-Min Nam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lim, DK., Kumar, A., Nam, JM. (2012). Engineered Nanostructures for the Ultrasensitive DNA Detection. In: Spoto, G., Corradini, R. (eds) Detection of Non-Amplified Genomic DNA. Soft and Biological Matter. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1226-3_3

Download citation

Publish with us

Policies and ethics