Skip to main content

DNA Analyses in Food Safety and Quality: Current Status and Expectations

  • Chapter
  • First Online:
Detection of Non-Amplified Genomic DNA

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

Food safety and quality are very important issues receiving a lot of attention in most countries by producers, consumers and regulatory and control authorities. In particular, DNA analysis in food is becoming popular not only in relation to genetically modified products (GMOs), in which DNA modification is the “clue” of the novelty, but also in other fields like microbiology and pathogen detection, which require long times for the cultivation and specially in cases in which the microorganisms are not cultivable like some viruses, as well as for authenticity and allergen detection. A new topic concerning “nutrigenetics and nutrigenomics” has also been mentioned, very important but still in its infancy, which could lead in the future to a personalized diet. In this chapter we have described the main areas of food research and fields of application where DNA analysis is being performed and the relative methods of detection, which are generally based on PCR. The possibility/opportunity to detect DNA without previous amplification (PCR-free) will be discussed. We have examined the following areas: (1) genetically modified foods (GMOs); (2) food allergens; (3) microbiological contaminations; (4) food authenticity; (5) nutrigenetics/nutrigenomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cifuentes, A.: Food analysis and foodomics. J. Chromatogr. A 1216, 7109 (2009)

    Google Scholar 

  2. Herrero, M., Garcıa-Canas, V., Simo, C., Cifuentes, A.: Recent advances in the application of CE methods for food analysis and foodomics. Electrophoresis 31, 205–228 (2010)

    Google Scholar 

  3. Herrero, M., Simó, C., Garcìa-Canas, V., Ibanez, E., Cifuentes, A.: Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom. Rev. 31, 49–69 (2012)

    Google Scholar 

  4. Querci, M., Van den Bulcke, M., Žel, J., Van den Eede, G., Broll, H.: New approaches in GMO detection. Anal. Bioanal. Chem. 396, 1991–2002 (2010)

    Google Scholar 

  5. Dwivedi, H.P., Jaykus, L.A.: Microbial detection of pathogens in foods: the current state-of-the-art and future directions. Crit. Rev. Microbiol. 37, 40–63 (2011)

    Google Scholar 

  6. Monaci, L., Visconti, A.: Immunochemical and DNA-based methods in food allergen analysis and quality assurance perspectives. Trends Food Sci. Technol. 21, 272–283 (2010)

    Google Scholar 

  7. Mafra, I., Ferreira, I.M.P.L.V.O., Oliveira, M.B.P.P.: Food authentication by PCR-based methods. Eur. Food Res. Technol. 227, 649–665 (2008)

    Google Scholar 

  8. Di Pinto, A., Forte, V.T., Guastadisegni, M.C., Martino, C., Schena, F.P., Tantillo, G.A.: Comparison of DNA extraction methods for food analysis. Food Control 18, 76–80 (2007)

    Google Scholar 

  9. Stephan, O., Vieths, S.: Development of a real-time PCR and a sandwich ELISA for detection of potentially allergenic trace amounts of peanut (Arachis hypogaea) in processed foods. J. Agric. Food Chem. 52, 3754–3760 (2004)

    Google Scholar 

  10. Di Bernardo, G., Del Gaudio, S., Galderisi, U., Cascino, A., Cipollaro, M.: Comparative evaluation of different DNA extraction procedures from food samples. Biotechnol. Prog. 23, 297–301 (2007)

    Google Scholar 

  11. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., Erlich, H.: Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Biotechnology 24, 17–27 (1986)

    Google Scholar 

  12. Vester, B., Wengel, J.: LNA (Locked Nucleic Acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43, 13233–13241 (2004)

    Google Scholar 

  13. Summerton, J., Weller, D.: Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 7, 187–195 (1997)

    Google Scholar 

  14. Nielsen, P.E., Egholm, M. (eds.): Peptide Nucleic Acids: Protocols and Applications, 2nd edn. Horizon Press, Wymondham (2004)

    Google Scholar 

  15. Corradini, R., Sforza, S., Tedeschi, T., Totsingan, F., Manicardi, A., Marchelli, R.: Peptide nucleic acids with a structurally biased backbone. Updated review and emerging challenges. Curr. Top. Med. Chem. 11, 1535–1554 (2011)

    Google Scholar 

  16. Sforza, S., Corradini, R., Tedeschi, T., Marchelli, R.: Food analysis and food authentication by peptide nucleic acid (PNA)-based technologies. Chem. Soc. Rev. 40, 221–232 (2011)

    Google Scholar 

  17. Weighardt, F.: GMO quantification in processed food and feed. Nat. Biotechnol. 25, 1213–1214 (2007)

    Google Scholar 

  18. Coisson, J.D., Cereti, E., Garino, C., D’Andrea, M., Recupero, M., Restani, P., Arlorio, M.: Microchip capillary electrophoresis (Lab-on-chip (R)) improves detection of celery (Apium graveolens L.) and sesame (Sesamum indicum L.) in foods. Food Res. Int. 43, 1237–1243 (2010)

    Google Scholar 

  19. Lauri, A., Mariani, P.O.: Potentials and limitations of molecular diagnostic methods in food safety. Genes Nutr. 4, 1–12 (2009)

    Google Scholar 

  20. James, C.: ISAAA Brief No. 39. ISAAA, Ithaca (2008)

    Google Scholar 

  21. European Commission Off.: J. Eur. Communities L106, 1–38 (2001)

    Google Scholar 

  22. Regulation (EC) No 1829/2003: The European Parliament and the Council of the European Union on genetically modified food and feed. Off. J. Eur. Union L268, 1–23 (2003)

    Google Scholar 

  23. Regulation (EC) No 1830/2003: The European Parliament and the Council of the European Union concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18/EC. Off. J. Eur. Union L268, 24–28 (2003)

    Google Scholar 

  24. Carter, C.A., Gruere, G.P.: International approval and labeling regulations of genetically modified food in major trading countries. In: Just, R., Alston, J.M., Zilberman, D. (eds.) Regulating Agricultural Biotechnology. Economics and Policies, pp. 459–480. Springer, New York (2006)

    Google Scholar 

  25. Ramessar, K., Capell, T., Twyman, R.M., Quemada, H., Christou, P.: Trace and traceability-a call for regulatory harmony. Nat. Biotechnol. 26, 975–978 (2008)

    Google Scholar 

  26. CERA (Center for Environmental Risk Assessment): GM database. Home page. http://www.cera-gmc.org/?action=gm_crop_database (2009)

  27. BATS (Centre for Biosafety and Sustainability): Genetically modified (GM) crops: molecular and regulatory details. Home page. http://www.bats.ch/gmo-watch/ (2003)

  28. GMDD (Genetically Modified Organism Detection Method Database): Home page. http://gmdd.shgmo.org/ (2011)

  29. GMO-Compass: Home page. http://www.gmo-compass.org/eng/ (2010)

  30. CRL (Community Reference Laboratory): Home page. http://gmo-crl.jrc.ec.europa.eu/ (2011)

  31. NCBI (National Centre for Biotechnology Information): Home page. http://blast.ncbi.nlm.nih.gov/ (2011)

  32. Peano, C., Bordoni, R., Gulli, M., Mezzelani, A., Samson, M.C., DeBellis, G., Marmiroli, N.: Multiplex polymerase chain reaction and ligation detection reaction/universal array technology for the traceability of genetically modified organisms in foods. Anal. Biochem. 346, 90–100 (2005)

    Google Scholar 

  33. Germini, A., Zanetti, A., Salati, C., Rossi, S., Forré, C., Schmid, S., Marchelli, R.: Development of a seven-target multiplex PCR for the simultaneous detection of transgenic soybean and maize in feeds and foods. J. Agric. Food Chem. 52, 3275–3280 (2004)

    Google Scholar 

  34. Ao, J.X., Li, Q.Z., Gao, X.J., Yu, Y.B., Li, L., Zhang, M.H.: A multiplex nested PCR assay for the simultaneous detection of genetically modified soybean, maize and rice in highly processed products. Food Control 22, 1617–1623 (2011)

    Google Scholar 

  35. Peano, C., Lesignoli, F., Gulli, M., Corradini, R., Samson, M.C., Marchelli, R., Marmiroli, N.: Development of a peptide nucleic acid polymerase chain reaction clamping assay for semiquantitative evaluation of genetically modified organism content in food. Anal. Biochem. 344, 174–182 (2005)

    Google Scholar 

  36. Rossi, S., Lesignoli, F., Germini, A., Faccini, A., Sforza, S., Corradini, R., Marchelli, R.: Identification of PCR-amplified genetically modified organisms (GMOs) DNA by peptide nucleic acid (PNA) probes in anion-exchange chromatographic analysis. J. Agric. Food Chem. 55, 2509–2516 (2007)

    Google Scholar 

  37. Totsingan, F., Rossi, S., Corradini, R., Tedeschi, T., Sforza, S., Juris, A., Scaravelli, E., Marchelli, R.: Label-free selective DNA detection with high mismatch recognition by PNA beacons and ion exchange HPLC. Org. Biomol. Chem. 6, 1232–1237 (2008)

    Google Scholar 

  38. Van den Bulcke, M., Lievens, A., Barbeau-Piednoir, E., MbongoloMbella, G., Roosens, N., Sneyers, M., Casi, A.L.: A theoretical introduction to “Combinatory SYBR®Green qPCR Screening”, a matrix-based approach for the detection of materials derived from genetically modified plants. Anal. Bioanal. Chem. 396, 2113–2123 (2010)

    Google Scholar 

  39. Querci, M., Foti, N., Bogni, A., Kluga, L., Broll, H., Van den Eede, G.: Real-time PCR-based ready-to-use multi-target analytical system for GMO detection food. Anal. Methods 2, 325–336 (2009)

    Google Scholar 

  40. Germini, A., Mezzelani, A., Lesignoli, F., Corradini, R., Marchelli, R., Bordoni, R., Consolandi, C., De Bellis, G.: Detection of genetically modified soybean using peptide nucleic acids (PNAs) and microarray technology. J. Agric. Food Chem. 52, 4535–4540 (2004)

    Google Scholar 

  41. Germini, A., Rossi, S., Zanetti, A., Corradini, R., Fogher, C., Marchelli, R.: Development of a PNA array platform for the detection of genetically modified organisms in food. J. Agric. Food Chem. 53, 3958–3962 (2005)

    Google Scholar 

  42. Hamels, S., Glouden, T., Gillard, K., Mazzara, M., Debode, F., Foti, N., Sneyers, M., Esteve Nuez, T., Pla, M., Berben, G., Moens, W., Bertheau, Y., Audéon, C., Van den Eede, G., Remacle, J.: A PCR-microarray method for the screening of genetically modified organisms. Eur. Food Res. Technol. 228, 531–541 (2009)

    Google Scholar 

  43. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Hase, T.: Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28, E63 (2000)

    Google Scholar 

  44. Fukuta, S., Mizukami, Y., Ishida, A., Ueda, J., Hasegawa, M., Hayashi, I., Hashimoto, M., Kanbe, M.: Real-time loop-mediated isothermal amplification for the CaMV-35S promoter as a screening method for genetically modified organisms. Eur. Food Res. Technol. 218, 496–500 (2004)

    Google Scholar 

  45. Barany, F.: Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl. Acad. Sci. USA 88, 189–193 (1991)

    ADS  Google Scholar 

  46. Gerry, N.P., Witowski, N.E., Day, J.P., Hammer, R.P., Barany, G., Barany, F.: Universal DNA microarray method for multiplex detection of low abundance point mutations. J. Mol. Biol. 292, 251–262 (1999)

    Google Scholar 

  47. Bordoni, R., Germini, A., Mezzelani, A., Marchelli, R., De Bellis, G.: A microarray platform for parallel detection of five transgenic events in foods: a combined polymerase chain reaction-ligation detection reaction-universal array method. J. Agric. Food Chem. 53, 912–918 (2005)

    Google Scholar 

  48. Bordoni, R., Mezzelani, A., Consolandi, C., Frosini, A., Rizzi, E., Castiglioni, B., Salati, C., Marmiroli, N., Marchelli, R., Bernardi, L.R., Battaglia, C., De Bellis, G.: Detection and quantitation of genetically modified maize (Bt-176 transgenic maize) by applying ligation detection reaction and universal array technology. J. Agric. Food Chem. 52, 1049–1054 (2004)

    Google Scholar 

  49. Kievits, T., van Gemen, B., van Strijp, D., Schukkink, R., Dircks, M., Adriaanse, H.M.A., Malek, L., Sooknanan, R., Lens, P.: NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J. Virol. Methods 35, 273–286 (1991)

    Google Scholar 

  50. Morisset, D., Stebih, D., Cankar, K., Žel, J., Gruden, K.: Alternative DNA amplification methods to PCR and their application in GMO detection: a review. Eur. Food Res. Technol. 227, 1287–1297 (2008)

    Google Scholar 

  51. Morisset, D., Dobnik, D., Hamels, S., Žel, J., Gruden, K.: NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs. Nucleic Acids Res. 36, e118 (2008)

    Google Scholar 

  52. Dobnik, D., Morisset, D., Gruden, K.: NAIMA as a solution for future GMO diagnostics challenges. Anal. Bioanal. Chem. 396, 2229–2233 (2010)

    Google Scholar 

  53. Waiblinger, H.U., Boernsen, B., Pietsch, K.: Praktische Anwendung für die Routineanalytik – Screening-Tabelle für den Nachweis zugelassener und nicht zugelassener gentechnisch veränderter Pflanzen. Dtsch Lebensm Rundsch 104, 261–264 (2008)

    Google Scholar 

  54. Waiblinger, H.U., Ernst, B., Anderson, A., Pietsch, K.: Validation and collaborative study of a P35S and T-nos duplex real-time PCR screening method to detect genetically modified organisms in food products. Eur. Food Res. Technol. 226, 1221–1228 (2007)

    Google Scholar 

  55. Waiblinger, H.U., Grohmann, L., Mankertz, J., Engelbert, D., Pietsch, K.: A practical approach to screen for authorized and unauthorised genetically modified plants. Anal. Bioanal. Chem. 396, 2065–2072 (2010)

    Google Scholar 

  56. Grohmann, L., Brünen-Nieweler, C., Nemeth, A., Waiblinger, H.U.: Collaborative trial validation studies of real-time PCR-based GMO screening methods for detection of the bar gene and the ctp2-cp4epsps construct. J. Agric. Food Chem. 57, 8913–8920 (2009)

    Google Scholar 

  57. Reiting, R., Broll, H., Waiblinger, H.U., Grohmann, L.: Collaborative study of a T-nos real-time PCR method for screening of genetically modified organisms in food products. J. Verbr. Lebensm. 2, 116–121 (2007)

    Google Scholar 

  58. Clive James International Service for the Acquisition of Agri-biotech Applications (ISAAA): Executive Summary brief 42. Global status of Commercialized biotech/GM Crops. http://www.isaaa.org/resources/publications/briefs/42/executivesummary/pdf/Brief%2042%20-%20Executive%20Summary%20-%20English.pdf (2010)

  59. Minunni, M., Tombelli, S., Fonti, J., Spiriti, M.M., Mascini, M., Bogani, P., Buiatti, M.: Detection of fragmented genomic DNA by PCR-free piezoelectric sensing using a denaturation approach. J. Am. Chem. Soc. 127, 7966–7967 (2005)

    Google Scholar 

  60. D’Agata, R., Corradini, R., Grasso, G., Marchelli, R., Spoto, G.: Ultrasensitive detection of DNA by PNA and nanoparticle-enhanced surface plasmon resonance imaging. Chembiochem 9, 2067–2070 (2008)

    Google Scholar 

  61. D’Agata, R., Corradini, R., Ferretti, C., Zanoli, L., Gatti, M., Marchelli, R., Spoto, G.: Ultrasensitive detection of non-amplified genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging. Biosens. Bioelectron. 25, 2095–2100 (2010)

    Google Scholar 

  62. Boyce, J.A., Assa’ad, A., Burks, A.W., Jones, S.M., Sampson, H.A., Wood, R.A., Plaut, M., Cooper, S.F., Fenton, M.J., Arshad, S.H., Bahna, S.L., Beck, L.A., Byrd-Bredbenner, C., Camargo Jr., C.A., Eichenfield, L., Furuta, G.T., Hanifin, J.M., Jones, C., Kraft, M., Levy, B.D., Lieberman, P., Luccioli, S., McCall, K.M., Schneider, L.C., Simon, R.A., Simons, F.E., Teach, S.J., Yawn, B.P., Schwaninger, J.M.: NIAID-sponsored expert panel: guidelines for the diagnosis and management of food allergy in the United States: summary of the NAID –sponsored expert panel. J. Allergy Clin. Immunol. 126, 1105–1118 (2010)

    Google Scholar 

  63. Sicherer, S.H.: Epidemiology of food allergy. J. Allergy Clin. Immunol. 127, 594–602 (2011)

    Google Scholar 

  64. Commission Directive 2000/13/EC: Off. J. Eur. Union L109, 29–42 (2000)

    Google Scholar 

  65. Commission Directive 2003/89/EC: Off. J. Eur. Union L308, 15–18 (2003)

    Google Scholar 

  66. Commission Directive 2006/142/EC: Off. J. Eur. Union L368, 110–111 (2006)

    Google Scholar 

  67. Commission Directive 2007/68/EC: Off. J. Eur. Union L310, 11–14 (2007)

    Google Scholar 

  68. Poms, R.E., Klein, C.L., Anklam, E.: Methods for allergen analysis in food: a review. Food Addit. Contam. 21, 1–31 (2004)

    Google Scholar 

  69. van Hengel, A.J.: Food allergen detection methods and the challenge to protect food-allergic consumers. Anal. Bioanal. Chem. 389, 111–118 (2007)

    Google Scholar 

  70. Schubert-Ullrich, P., Rudolf, J., Ansari, P., Galler, B., Führer, M., Molinelli, A., Baumgartner, S.: Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview. Anal. Bioanal. Chem. 395, 69–81 (2009)

    Google Scholar 

  71. Westphal, C.D., Pereira, M.R., Raybourne, R.B., Williams, K.M.: Evaluation of extraction buffers using the current approach of detecting multiple allergenic and nonallergenic proteins in food. J. AOAC Int. 87, 1458–1465 (2004)

    Google Scholar 

  72. Poms, R.E., Capelletti, C., Anklam, E.: Effect of roasting history and buffer composition on peanut protein extraction efficiency. Mol. Nutr. Food Res. 48, 459–464 (2004)

    Google Scholar 

  73. Taylor, S.L., Nordlee, J.A., Niemann, L.M., Lambrecht, D.M.: Allergen immunoassays – considerations for use of naturally incurred standards. Anal. Bioanal. Chem. 395, 83–92 (2009)

    Google Scholar 

  74. Matsuda, R., Yoshioka, Y., Akiyama, H., Aburatani, K., Watanabe, Y., Matsumoto, T., Morishita, N., Sato, H., Mishima, T., Gamo, R., Kihira, Y., Maitani, T.: Interlaboratory evaluation of two enzyme-linked immunosorbent assay kits for the detection of egg, milk, wheat, buckwheat, and peanut in foods. J. AOAC Int. 89, 1600–1608 (2006)

    Google Scholar 

  75. Hefle, S., Yeung, J., Helm, R.: Antibodies. In: Koppermann, J., Hefle, L. (eds.) Detecting Allergens in Food, pp. 65–78. CRC Press, Boca Raton (2006)

    Google Scholar 

  76. Poms, R., Emons, H., Anklam, E.: Reference materials and method validation in allergen detection. In: Koppermann, J., Hefle, L. (eds.) Detecting Allergens in Food, pp. 348–356. CRC Press, Boca Raton (2006)

    Google Scholar 

  77. Abbott, M., Hayward, S., Ross, W., Godefroy, S.B., Ulberth, F., Van Hengel, A.J., Roberts, J., Akiyama, H., Popping, B., Yeung, J.M., Wehling, P., Taylor, S.L., Poms, R.E., Delahaut, P.: Validation procedures for quantitative food allergen ELISA methods: community guidance and best practices. J. AOAC Int. 93, 442–450 (2010)

    Google Scholar 

  78. Monaci, L., van Hengel, A.J.: Development of a method for the quantification of whey allergen traces in mixed-fruit juices based on liquid chromatography with mass spectrometric detection. J. Chromatogr. A 1192, 113–120 (2008)

    Google Scholar 

  79. Schneider, N., Becker, C.M., Pischetsrieder, M.: Analysis of lysozyme in cheese by immunocapture mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878, 201–206 (2010)

    Google Scholar 

  80. Shefcheck, K.J., Callahan, J.H., Musser, S.M.: Confirmation of peanut protein using peptide markers in dark chocolate using liquid chromatography-tandem mass spectrometry (LC-MS/MS). J. Agric. Food Chem. 54, 7953–7959 (2006)

    Google Scholar 

  81. Careri, M., Elviri, L., Lagos, J.B., Mangia, A., Speroni, F., Terenghi, M.: Selective and rapid immunomagnetic bead-based sample treatment for the liquid chromatography-electrospray ion-trap mass spectrometry detection of Ara h3/4 peanut protein in foods. J. Chromatogr. A 1206, 89–94 (2008)

    Google Scholar 

  82. Cavatorta, V., Sforza, S., Mastrobuoni, G., Pieraccini, G., Francese, S., Moneti, G., Dossena, A., Pastorello, E.A., Marchelli, R.: Unambiguous characterization and tissue localization of Pru P 3 peach allergen by electrospray mass spectrometry and MALDI imaging. J. Mass Spectrom. 44, 891–897 (2009)

    Google Scholar 

  83. Schoringhumer, K., Redl, G., Cichna-Markl, M.: Development and validation of a duplex real-time PCR method to simultaneously detect potentially allergenic sesame and hazelnut in food. J. Agric. Food Chem. 57, 2126–2134 (2009)

    Google Scholar 

  84. D’Andrea, M., Coïsson, J.D., Locatelli, M., Garino, C., Cereti, E., Arlorio, M.: Validating allergen coding genes (Cor a 1, Cor a 8, Cor a 14) as target sequences for hazelnut detection via Real-Time PCR. Food Chem. 124, 1164–1171 (2011)

    Google Scholar 

  85. Dovicovicova, L., Olexova, L., Pangallo, D., Siekel, P., Kuchta, T.: Polymerase chain reaction (PCR) for the detection of celery (Apium graveolens) in food. Eur. Food Res. Technol. 218, 493–495 (2004)

    Google Scholar 

  86. Germini, A., Scaravelli, E., Lesignoli, F., Sforza, S., Corradini, R., Marchelli, R.: Polymerase chain reaction coupled with peptide nucleic acid high-performance liquid chromatography for the sensitive detection of traces of potentially allergenic hazelnut in foodstuffs. Eur. Food Res. Technol. 220, 619–624 (2005)

    Google Scholar 

  87. Rossi, S., Scaravelli, E., Germini, A., Corradini, R., Fogher, C., Marchelli, R.: A PNA-array platform for the detection of hidden allergens in foodstuffs. Eur. Food Res. Technol. 223, 1–6 (2006)

    Google Scholar 

  88. Holzhauser, T., Stephan, O., Vieths, S.: Detection of potentially allergenic hazelnut (Corylus avellana) residues in food: a comparative study with DNA PCR-ELISA and protein sandwich-ELISA. J. Agric. Food Chem. 50, 5808–5815 (2002)

    Google Scholar 

  89. Scaravelli, E., Brohee, M., Marchelli, R., van Hengel, A.J.: Development of three real-time PCR assays to detect peanut allergen residue in processed food products. Eur. Food Res. Technol. 227, 857–869 (2008)

    Google Scholar 

  90. Pafundo, S., Gullì, M., Marmiroli, N.: Comparison of DNA extraction methods and development of duplex PCR and real-time PCR to detect tomato, carrot, and celery in food. J. Agric. Food Chem. 12, 10414–10424 (2011)

    Google Scholar 

  91. Scallan, E., Griffin, P.M., Angulo, F.J., Tauxe, R.V., Hoekstra, R.M.: Foodborne illness acquired in the United States—unspecified agents. Emerg. Infect. Dis. 17, 16–22 (2011)

    Google Scholar 

  92. Scallan, E., Hoekstra, R.M., Angulo, F.J., et al.: Foodborne illness acquired in the United States—major pathogens. Emerg. Infect. Dis. 17, 7–15 (2011)

    Google Scholar 

  93. Juste, A., Thomma, B.P., Lievens, B.: Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiol. 25, 745e761 (2008)

    Google Scholar 

  94. Seo, K.H., Valentin-Bon, I.E., Brackett, R.E.: Detection and enumeration of Salmonella Enteritidis in homemade ice cream associated with an outbreak, comparison of conventional and real-time PCR methods. J. Food Prot. 69, 639–643 (2006)

    Google Scholar 

  95. McCarthy, N., Reen, F.J., Buckley, J.F., Frye, J.G., Boyd, E.F., Gilroy, D.: Sensitive and rapid molecular detection assays for Salmonella enterica serovars Typhimurium and Heidelberg. J. Food Prot. 72, 2350–2357 (2009)

    Google Scholar 

  96. Hein, I., Flekna, G., Krassnig, M., Wagner, M.: Real-time PCR for the detection of Salmonella spp in food. An alternative approach to a conventional PCR system suggested by the FOOD-PCR project. J. Microbiol. Methods 66, 538–547 (2006)

    Google Scholar 

  97. Cheng, C.M., Lin, W., Van, K.T., Phan, L., Tran, N.N., Farmer, D.: Rapid detection of Salmonella in foods using real-time PCR. J. Food Prot. 71, 2436–2441 (2008)

    Google Scholar 

  98. Gonzalez-Escalona, N., Hammack, T.S., Russell, M., Jacobson, A.P., De Jesus, A.J., Brown, E.W., Lampel, K.A.: Detection of live Salmonella sp cells in produce by a TaqMan-based quantitative reverse transcriptase real-time PCR targeting invA mRNA. Appl. Environ. Microbiol. 75, 3714–3720 (2009)

    Google Scholar 

  99. Hong, J., Jung, W.K., Kim, J.M., Kim, S.H., Koo, H.C., Ser, J., Park, Y.H.: Quantification and differentiation of Campylobacter jejuni and Campylobacter coli in raw chicken meats using a real-time PCR method. J. Food Prot. 70, 2015–2022 (2007)

    Google Scholar 

  100. Wolffs, P.F., Glencross, K., Norling, B., Griffiths, M.W.: Simultaneous quantification of pathogenic Campylobacter and Salmonella in chicken rinse fluid by a flotation and real-time multiplex PCR procedure. Int. J. Food Microbiol. 117, 50–54 (2007)

    Google Scholar 

  101. Singh, J., Batish, V.K., Grover, S.: A scorpion probe-based real-time PCR assay for detection of E. coli O157:H7 in dairy products. Foodborne Pathog. Dis. 6, 395–400 (2009)

    Google Scholar 

  102. Singh, J., Batish, V.K., Grover, S.: A molecular beacon-based duplex real-time polymerase chain reaction assay for simultaneous detection of Escherichia coli O157:H7 and Listeria monocytogenesin milk and milk products. Foodborne Pathog. Dis. 6, 1195–1201 (2009)

    Google Scholar 

  103. Aparecida de Oliveira, M., Abeid Ribeiro, E.G., Morato Bergamini, A.M., Pereira De Martinis, E.C.: Quantification of Listeria monocytogenes in minimally processed leafy vegetables using a combined method based on enrichment and 16 S rRNA real-time PCR. Food Microbiol. 27, 19–23 (2010)

    Google Scholar 

  104. Rossmanith, P., Krassnig, M., Wagner, M., Hein, I.: Detection of Listeria monocytogenesin food using a combined enrichment/real-time PCR method targeting the prfA gene. Res. Microbiol. 157, 763–771 (2006)

    Google Scholar 

  105. Morales-Rayas, R., Wolffs, P.F., Griffiths, M.W.: Simultaneous separation and detection of hepatitis A virus and norovirus in produce. Int. J. Food Microbiol. 139, 48–55 (2010)

    Google Scholar 

  106. Deiman, B., van Aarle, P., Sillekens, P.: Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Mol. Biotechnol. 20, 163–179 (2002)

    Google Scholar 

  107. Parida, M., Sannarangaiah, S., Dash, P.K., Rao, P.V., Morita, K.: Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev. Med. Virol. 18, 407–421 (2008)

    Google Scholar 

  108. Mori, Y., Notomi, T.: Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J. Infect. Chemother. 15, 62–69 (2009)

    Google Scholar 

  109. Piepenburg, O., Williams, C.H., Stemple, D.L., Armes, N.A.: DNA detection using recombination proteins. PLoS Biol. 4, e204 (2006)

    Google Scholar 

  110. Vincent, M., Xu, Y., Kong, H.: Helicase-dependent isothermal DNA amplification. EMBO Rep. 5, 795–800 (2004)

    Google Scholar 

  111. Jeong, Y.J., Park, K., Kim, D.E.: Isothermal DNA amplification in vitro: the helicase-dependent amplification system. Cell. Mol. Life Sci. 66, 3325–3336 (2009)

    Google Scholar 

  112. Zhao, W., Ali, M.M., Brook, M.A., Li, Y.: Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angew. Chem. Int. Ed. Engl 47, 6330–6337 (2008)

    Google Scholar 

  113. Lamhoujeb, S., Fliss, I., Ngazoa, S.E., Jean, J.: Evaluation of the persistence of infectious human noroviruses on food surfaces by using real-time nucleic acid sequence-based amplification. Appl. Environ. Microbiol. 74, 3349–3355 (2008)

    Google Scholar 

  114. Kou, X., Wu, Q., Zhang, J., Fan, H.: Rapid detection of noroviruses in fecal samples and shellfish by nucleic acid sequence-based amplification. J. Microbiol. 44, 403–408 (2006)

    Google Scholar 

  115. Jean, J., D’Souza, D.H., Jaykus, L.A.: Multiplex nucleic acid sequence-based amplification for simultaneous detection of several enteric viruses in model ready-to-eat foods. Appl. Environ. Microbiol. 70, 6603–6610 (2004)

    Google Scholar 

  116. Churruca, E., Girbau, C., Martínez, I., Mateo, E., Alonso, R., Fernández-Astorga, A.: Detection of Campylobacter jejuni and Campylobacter coli in chicken meat samples by real-time nucleic acid sequence-based amplification with molecular beacons. Int. J. Food Microbiol. 117, 85–90 (2007)

    Google Scholar 

  117. Cools, I., Uyttendaele, M., D’Haese, E., Nelis, H.J., Debevere, J.: Development of a real-time NASBA assay for the detection of Campylobacter jejuni cells. J. Microbiol. Methods 66, 313–320 (2006)

    Google Scholar 

  118. Nadal, A., Coll, A., Cook, N., Pla, M.: A molecular beacon-based real time NASBA assay for detection of Listeria monocytogenes in food products: role of target mRNA secondary structure on NASBA design. J. Microbiol. Methods 68, 623–632 (2007)

    Google Scholar 

  119. Abd el-Galil, K.H., el-Sokkary, M.A., Kheira, S.M., Salazar, A.M., Yates, M.V., Chen, W., Mulchandani, A.: Real-time nucleic acid sequence-based amplification assay for detection of hepatitis A virus. Appl. Environ. Microbiol. 71, 7113–7116 (2005)

    Google Scholar 

  120. Zhang, G., Brown, E.W., González-Escalona, N.: Comparison of real-time PCR, reverse transcriptase real-time PCR, loop-mediated isothermal amplification, and the FDA conventional microbiological method for the detection of Salmonella spp in produce. Appl. Environ. Microbiol. 77, 6495–6501 (2011)

    Google Scholar 

  121. Chen, S., Wang, F., Beaulieu, J.C., Stein, R.E., Ge, B.: Rapid detection of viable salmonellae in produce by coupling propidium monoazide with loop-mediated isothermal amplification. Appl. Environ. Microbiol. 77, 4008–4016 (2011)

    Google Scholar 

  122. Techathuvanan, C., Draughon, F.A., D’Souza, D.H.: Comparison of reverse transcriptase PCR, reverse transcriptase loop-mediated isothermal amplification, and culture-based assays for Salmonella detection from pork processing environments. J. Food Prot. 74, 294–301 (2011)

    Google Scholar 

  123. Yang, J.L., Ma, G.P., Yang, R., Yang, S.Q., Fu, L.Z., Cheng, A.C., Wang, M.S., Zhang, S.H., Shen, K.F., Jia, R.Y., Deng, S.X., Xu, Z.Y.: Simple and rapid detection of Salmonella serovar Enteritidis under field conditions by loop-mediated isothermal amplification. J. Appl. Microbiol. 109, 1715–1723 (2010)

    Google Scholar 

  124. Techathuvanan, C., Draughon, F.A., D’Souza, D.H.: Loop-mediated isothermal amplification (LAMP) for the rapid and sensitive detection of Salmonella Typhimurium from pork. J. Food Sci. 75, M165–M172 (2010)

    Google Scholar 

  125. Ueda, S., Kuwabara, Y.: The rapid detection of Salmonella from food samples by loop-mediated isothermal amplification (LAMP). Biocontrol Sci. 14, 73–76 (2009)

    Google Scholar 

  126. Hara-Kudo, Y., Yoshino, M., Kojima, T., Ikedo, M.: Loop-mediated isothermal amplification for the rapid detection of Salmonella. FEMS Microbiol. Lett. 253, 155–161 (2005)

    Google Scholar 

  127. Tang, M.J., Zhou, S., Zhang, X.Y., Pu, J.H., Ge, Q.L., Tang, X.J., Gao, Y.S.: Rapid and sensitive detection of Listeria monocytogenes by loop-mediated isothermal amplification. Curr. Microbiol. 63, 511–516 (2011)

    Google Scholar 

  128. Wang, L., Li, Y., Chu, J., Xu, Z., Zhong, Q.: Development and application of a simple loop-mediated isothermal amplification method on rapid detection of Listeria monocytogenes strains. Mol. Biol. Rep. 39, 445–449 (2012)

    Google Scholar 

  129. Lu, X., Mo, Z.Y., Zhao, H.B., Yan, H., Shi, L.: LAMP-based method for a rapid identification of Legionella spp. and Legionella pneumophila. Appl. Microbiol. Biotechnol. 92, 179–187 (2011)

    Google Scholar 

  130. Wang, F., Jiang, L., Ge, B.: Loop-mediated isothermal amplification assays for detecting shiga toxin-producing Escherichia coliin ground beef and human stools. J. Clin. Microbiol. 50, 91–97 (2012)

    Google Scholar 

  131. Kaneko, I., Miyamoto, K., Mimura, K., Yumine, N., Utsunomiya, H., Akimoto, S., McClane, B.A.: Detection of enterotoxigenic Clostridium perfringens in meat samples by using molecular methods. Appl. Environ. Microbiol. 77, 7526–7532 (2011)

    Google Scholar 

  132. Surasilp, T., Longyant, S., Rukpratanporn, S., Sridulyakul, P., Sithigorngul, P., Chaivisuthangkura, P.: Rapid and sensitive detection of Vibrio vulnificus by loop-mediated isothermal amplification combined with lateral flow dipstick targeted to rpoS gene. Mol. Cell. Probes 25, 158–163 (2011)

    Google Scholar 

  133. Han, F., Wang, F., Ge, B.: Detecting potentially virulent Vibrio vulnificus strains in raw oysters by quantitative loop-mediated isothermal amplification. Appl. Environ. Microbiol. 77, 2589–2595 (2011)

    Google Scholar 

  134. Yoda, T., Suzuki, Y., Yamazaki, K., Sakon, N., Kanki, M., Kase, T., Takahashi, K., Inoue, K.: Application of a modified loop-mediated isothermal amplification kit for detecting Norovirus genogroups I and II. J. Med. Virol. 81, 2072–2078 (2009)

    Google Scholar 

  135. Niessen, L., Vogel, R.F.: Detection of Fusarium graminearum DNA using a loop-mediated isothermal amplification (LAMP) assay. Int. J. Food Microbiol. 140, 183–191 (2010)

    Google Scholar 

  136. Yamazaki, W., Taguchi, M., Ishibashi, M., Kitazato, M., Nukina, M., Misawa, N., Inoue, K.: Development and evaluation of a loop-mediated isothermal amplification assay for rapid and simple detection of Campylobacter jejuni and Campylobacter coli. J. Med. Microbiol. 57, 444–451 (2008)

    Google Scholar 

  137. Perlin, D.S., Zhao, Y.: Molecular diagnostic platforms for detecting Aspergillus. Med. Mycol. 47(Suppl 1), S223–S232 (2009)

    Google Scholar 

  138. Wang, C.H., Lien, K.Y., Wu, J.J., Lee, G.B.: A magnetic bead-based assay for the rapid detection of methicillin-resistant Staphylococcus aureus by using a microfluidic system with integrated loop-mediated isothermal amplification. Lab Chip 11, 1521–1531 (2011)

    Google Scholar 

  139. Dimov, I.K., Garcia-Cordero, J.L., O’Grady, J., Poulsen, C.R., Viguier, C., Kent, L., Daly, P., Lincoln, B., Maher, M., O’Kennedy, R., Smith, T.J., Ricco, A.J., Lee, L.P.: Integrated microfluidic tmRNA purification and real-time NASBA device for molecular diagnostics. Lab Chip 8, 2071–2078 (2008)

    Google Scholar 

  140. Liu, C., Geva, E., Mauk, M., Qiu, X., Abrams, W.R., Malamud, D., Curtis, K., Owen, S.M., Bau, H.H.: An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst 136, 2069–2076 (2011)

    ADS  Google Scholar 

  141. Fang, X., Liu, Y., Kong, J., Jiang, X.: Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal. Chem. 82, 3002–3006 (2010)

    Google Scholar 

  142. Won, J.Y., Min, J., Park, J.H.: Bacteria adsorption on hydrophilic surfaces for the sensitive detection of pathogenic bacteria using a single tube chamber system. Biosens. Bioelectron. 26, 1763–1767 (2010)

    Google Scholar 

  143. Lutz, S., Weber, P., Focke, M., Faltin, B., Hoffmann, J., Müller, C., Mark, D., Roth, G., Munday, P., Armes, N., Piepenburg, O., Zengerle, R., von Stetten, F.: Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10, 887–893 (2010)

    Google Scholar 

  144. Mahalanabis, M., Do, J., ALMuayad, H., Zhang, J.Y., Klapperich, C.M.: An integrated disposable device for DNA extraction and helicase dependent amplification. Biomed. Microdevices 12, 353–359 (2010)

    Google Scholar 

  145. Liu, C., Mauk, M.G., Hart, R., Qiu, X., Bau, H.H.: A self-heating cartridge for molecular diagnostics. Lab Chip 11, 2686–2692 (2011)

    Google Scholar 

  146. Asiello, P.J., Baeumner, A.J.: Miniaturized isothermal nucleic acid amplification, a review. Lab Chip 11, 1420–1430 (2011)

    Google Scholar 

  147. Prompamorn, P., Sithigorngul, P., Rukpratanporn, S., Longyant, S., Sridulyakul, P., Chaivisuthangkura, P.: The development of loop-mediated isothermal amplification combined with lateral flow dipstick for detection of Vibrio parahaemolyticus. Lett. Appl. Microbiol. 52, 344–351 (2011)

    Google Scholar 

  148. Tomlinson, J.A., Dickinson, M.J., Boonham, N.: Rapid detection of Phytophthora ramorum and P. kernoviae by two-minute DNA extraction followed by isothermal amplification and amplicon detection by generic lateral flow device. Phytopathology 100, 143–149 (2010)

    Google Scholar 

  149. Arunrut, N., Prombun, P., Saksmerprome, V., Flegel, T.W., Kiatpathomchai, W.: Rapid and sensitive detection of infectious hypodermal and hematopoietic necrosis virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. J. Virol. Methods 171, 21–25 (2011)

    Google Scholar 

  150. Nimitphak, T., Meemetta, W., Arunrut, N., Senapin, S., Kiatpathomchai, W.: Rapid and sensitive detection of Penaeus monodon nucleopolyhedrovirus (PemoNPV) by loop-mediated isothermal amplification combined with a lateral-flow dipstick. Mol. Cell. Probes 24, 1–5 (2010)

    Google Scholar 

  151. Soliman, H., El-Matbouli, M.: Loop mediated isothermal amplification combined with nucleic acid lateral flow strip for diagnosis of cyprinid herpes virus-3. Mol. Cell. Probes 24, 38–43 (2010)

    Google Scholar 

  152. Puthawibool, T., Senapin, S., Kiatpathomchai, W., Flegel, T.W.: Detection of shrimp infectious myonecrosis virus by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick. J. Virol. Methods 156, 27–31 (2009)

    Google Scholar 

  153. Jaroenram, W., Kiatpathomchai, W., Flegel, T.W.: Rapid and sensitive detection of white spot syndrome virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. Mol. Cell. Probes 23, 65–70 (2009)

    Google Scholar 

  154. Arunrut, N., Seetang-Nun, Y., Phromjai, J., Panphut, W., Kiatpathomchai, W.: Rapid and sensitive detection of Laem-Singh virus by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick. J. Virol. Methods 177, 71–74 (2011)

    Google Scholar 

  155. Nimitphak, T., Kiatpathomchai, W., Flegel, T.W.: Shrimp hepatopancreatic parvovirus detection by combining loop-mediated isothermal amplification with a lateral flow dipstick. J. Virol. Methods 154, 56–60 (2008)

    Google Scholar 

  156. Gill, P., Ghaemi, A.: Nucleic acid isothermal amplification technologies: a review. Nucleosides Nucleotides Nucleic Acids 27, 224–243 (2008)

    Google Scholar 

  157. Brehm-Stecher, B., Young, C., Jaykus, L.A., Tortorello, M.L.: Sample preparation: the forgotten beginning. J. Food Prot. 72, 1774–1789 (2009)

    Google Scholar 

  158. Lazcka, O., Del Campo, F.J., Muñoz, F.X.: Pathogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron. 22, 1205–1217 (2007)

    Google Scholar 

  159. Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C.: An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol. Adv. 28, 232–254 (2010)

    Google Scholar 

  160. Nugen, S.R., Baeumner, A.J.: Trends and opportunities in food pathogen detection. Anal. Bioanal. Chem. 391, 451–454 (2008)

    Google Scholar 

  161. Coff, C., Korthals, M., Barling, D.: Chapter 1: Ethical traceability and informed food choice. In: Coff, C., Barling, D., Korthals, M., Nielsen, T. (eds.) Ethical Traceability and Communicating Food, vol. 15, pp. 1–18. Springer, Dordrecht (2008)

    Google Scholar 

  162. Aslan, Ö., Hamill, R.M., Sweeney, T., Reardon, W., Mullen, A.M.: Integrity of nuclear genomic deoxyribonucleic acid in cooked meat: implications for food traceability. J. Anim. Sci. 87, 57–61 (2009)

    Google Scholar 

  163. Van Asch, B., Silva Santos, L., Carneiro, J., Pereira, F., Amorim, A.: Identification of mtDNA lineages of Sus scrofa by multiplex single base extension for the authentication of processed food products. J. Agric. Food Chem. 59, 6920–6926 (2011)

    Google Scholar 

  164. Ali, M.E., Hashim, U., Mustafa, S., Che Man, Y.B., Yusop, M.H.M., Bari, M.F., Islam, Kh N., Hasan, M.F.: Nanoparticle sensor for label free detection of swine DNA in mixed biological samples. Nanotechnology 22, 195503 (2011)

    ADS  Google Scholar 

  165. Lago, F.C., Herrero, B., Vieites, J.M., Espineira, M.: Genetic identification of horse mackerel and related species in seafood products by means of forensically informative nucleotide sequencing methodology. J. Agric. Food Chem. 59, 2223–2228 (2011)

    Google Scholar 

  166. Jerôme, M., Martinsohn, J.T., Ortega, D., Carreau, P., Verrez-Bagnis, V., Mouchel, O.: Toward fish and seafood traceability: anchovy species determination in fish products by molecular markers and support through a public domain database. J. Agric. Food Chem. 56, 3460–3469 (2008)

    Google Scholar 

  167. Dooley, J.J., Sage, H.D., Clarke, M.A.L., Brown, H.M., Garrett, S.D.: Fish species identification using PCR-RFLP analysis and lab-on-a-chip capillary electrophoresis: application to detect white fish species in food products and an interlaboratory study. J. Agric. Food Chem. 53, 3348–3357 (2005)

    Google Scholar 

  168. Ponzoni, E., Mastromauro, F., Gianì, S., Breviario, D.: Traceability of plant diet contents in raw cow milk samples. Nutrients 1, 251–262 (2009)

    Google Scholar 

  169. Bonizzi, I., Buffoni, J.N., Feligini, M., Enne, G.: Investigating the relationship between raw milk bacterial composition, as described by intergenic transcribed spacer–PCR fingerprinting, and pasture altitude. J. Appl. Microbiol. 107, 1319–1329 (2009)

    Google Scholar 

  170. Bonizzi, I., Feligini, M., Aleandri, R., Enne, G.: Genetic traceability of the geographical origin of typical Italian water buffalo Mozzarella cheese: a preliminary approach. J. Appl. Microbiol. 102, 667–673 (2006)

    Google Scholar 

  171. Chen, X., Gao, C., Li, H., Huang, L., Sun, Q., Dong, Y., Tian, C., Gao, S., Dong, H., Guan, D., Hu, X., Zhao, S., Li, L., Zhu, L., Yan, Q., Zhang, J., Zen, K., Zhang, C.Y.: Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res. 20, 1128–1137 (2010)

    Google Scholar 

  172. Spaniolas, S., May, S.T., Bennett, M.J., Tucker, G.A.: Authentication of coffee by means of PCR-RFLP analysis and lab-on-a-chip capillary electrophoresis. J. Agric. Food Chem. 54, 7466–7470 (2006)

    Google Scholar 

  173. Martellossi, C., Taylor, E.J., Lee, D., Graziosi, G., Donini, P.: DNA extraction and analysis from processed coffee beans. J. Agric. Food Chem. 53, 8432–8436 (2005)

    Google Scholar 

  174. Bracci, T., Busconi, M., Fogher, C., Sebastiani, L.: Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis. Plant Cell Rep. 30, 449–462 (2011)

    Google Scholar 

  175. Pafundo, S., Agrimonti, C., Marmiroli, N.: Traceability of plant contribution in olive oil by amplified fragment length polymorphisms. J. Agric. Food Chem. 53, 6995–7002 (2005)

    Google Scholar 

  176. Pafundo, S., Agrimonti, C., Maestri, E., Marmiroli, N.: Applicability of SCAR markers to food genomics: olive oil traceability. J. Agric. Food Chem. 55, 6052–6059 (2007)

    Google Scholar 

  177. Pasqualone, A., Montemurro, C., Summo, C., Sabetta, W., Caponio, F., Blanco, A.: Effectiveness of microsatellite DNA markers in checking the identity of protected designation of origin extra virgin olive oil. J. Agric. Food Chem. 55, 3857–3862 (2007)

    Google Scholar 

  178. Consolandi, C., Palmieri, L., Severgnini, M., Maestri, E., Marmiroli, N., Agrimonti, C., Baldoni, L., Donini, P., Bellis, G., Castiglioni, B.: A procedure for olive oil traceability and authenticity: DNA extraction, multiplex PCR and LDR-universal array analysis. Eur. Food Res. Technol. 227, 1429–1438 (2008)

    Google Scholar 

  179. Pafundo, S., Busconi, M., Agrimonti, C., Fogher, C., Marmiroli, M.: Storage-time effects on olive oil DNA assessed by amplified fragments length polymorphisms. Food Chem. 123, 787–793 (2010)

    Google Scholar 

  180. Doveri, S., O’Sullivan, D.M., Lee, D.: Non-concordance between genetic profiles of olive oil and fruit: a cautionary note to the use of DNA markers for provenance testing. J. Agric. Food Chem. 54, 9221–9226 (2006)

    Google Scholar 

  181. Brennan, R.O.: Nutrigenetics: New Concepts for Relieving Hypoglycemia. Signet Books, New York (1977)

    Google Scholar 

  182. Ordovas, J.M.: Genetic influences on blood lipids and cardiovascular disease risk: tools for primaryprevention. Am. J. Clin. Nutr. 89, S1509–S1517 (2009)

    Google Scholar 

  183. Lopez-Miranda, J., Ordovas, J.M., Mata, P., Lichtenstein, A.H., Clevidence, B., et al.: Effect of apolipopro tein E phenotype on diet-induced lowering of plasma low density lipoprotein cholesterol. J. Lipid Res. 35, 1965–1975 (1994)

    Google Scholar 

  184. Miettinen, T.A., Gylling, H., Vanhanen, H.: Serum cholesterol response to dietary cholesterol and apolipoprotein E phenotype. Lancet 2, 1261 (1988)

    Google Scholar 

  185. Mahley, R.W., Weisgraber, K.H., Innerarity, T.L., Rall, S.C.: Genetic defects in lipoprotein metabolism: elevation of atherogenic lipoproteins caused by impaired catabolism. JAMA 265, 78–83 (1991)

    Google Scholar 

  186. Cobb, M.M., Teitlebaum, H., Risch, N., Jekel, J., Ostfeld, A.: Influence of dietary fat, apolipoprotein E phenotype, and sex on plasma lipoprotein levels. Circulation 86, 849–857 (1992)

    Google Scholar 

  187. Wang, J., John, E.M., Ingles, S.A.: 5-lipoxygenase and 5-lipoxygenase-activating protein gene polymorphisms, dietary linoleic acid, and risk for breast cancer. Cancer. Epidemiol. Biomarkers Prev. 17, 2748–2754 (2008)

    Google Scholar 

  188. Fradet, V., Cheng, I., Casey, G., Witte, J.S.: Dietary omega-3 fatty acids, cyclooxgenase-2 genetic variation, and aggressive prostate cancer risk. Clin. Cancer Res. 15, 2559–2566 (2009)

    Google Scholar 

  189. Hedelin, M., Chang, E.T., Wiklund, F., Bellocco, R., Klint, A., et al.: Association of frequent consumption of fatty fish with prostate cancer risk is modified by COX-2 polymorphism. Int. J. Cancer 120, 398–405 (2007)

    Google Scholar 

  190. Simopoulus, A.P.: Nutrigenetics/nutrigenomics. Annu. Rev. Public Health 31, 53–68 (2010)

    Google Scholar 

  191. Osborn, T.F., Goldstein, J.L., Brown, M.S.: 5-End of HMG-CoA reductase gene contains sequences responsible for cholesterol mediated inhibition of transcription. Cell 42, 203–212 (1985)

    Google Scholar 

  192. Clarke, S.D., Jump, D.B.: Polyunsaturated fatty acid regulation of hepatic gene transcription. Lipids 31(Suppl.), 7–11 (1996)

    Google Scholar 

  193. Clarke, S.D., Romsos, D.R., Leveille, G.A.: Differential effects of dietary methyl esters of long chain polyunsaturated fatty acids on rat liver and adipose tissue lipogenesis. J. Nutr. 107, 1170–1180 (1977)

    Google Scholar 

  194. Kallio, P., Kolehmainen, M., Laaksonen, D.E., Kekäläinen, J., Salopuro, T., Sivenius, K., Pulkkinen, L., Mykkänen, H.M., Niskanen, L., Uusitupa, M., Poutanen, K.S.: Dietary carbohydrate modification induces alterations in gene expression in abdominal subcutaneous adipose tissue in persons with the metabolic syndrome: the FUNGENUT study. Am. J. Clin. Nutr. 85, 1417–1427 (2007)

    Google Scholar 

  195. Masotti, A., Da Sacco, L., Bottazzo, G.F., Alisi, A.: Microarray technology: a promising tool in nutrigenomics. Crit. Rev. Food Sci. Nutr. 50, 693–698 (2010)

    Google Scholar 

  196. D’Ambrosio, C., Gatta, L., Bonini, S.: The future of microarray technology: networking the genome search. Allergy 60, 1219–1226 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosangela Marchelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marchelli, R., Tedeschi, T., Tonelli, A. (2012). DNA Analyses in Food Safety and Quality: Current Status and Expectations. In: Spoto, G., Corradini, R. (eds) Detection of Non-Amplified Genomic DNA. Soft and Biological Matter. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1226-3_2

Download citation

Publish with us

Policies and ethics