Skip to main content

Nucleotide-Mediated Airway Clearance

  • Chapter
  • First Online:
Purinergic Regulation of Respiratory Diseases

Part of the book series: Subcellular Biochemistry ((SCBI,volume 55))

Abstract

A thin layer of airway surface liquid (ASL) lines the entire surface of the lung and is the first point of contact between the lung and the environment. Surfactants contained within this layer are secreted in the alveolar region and are required to maintain a low surface tension and to prevent alveolar collapse. Mucins are secreted into the ASL throughout the respiratory tract and serve to intercept inhaled pathogens, allergens and toxins. Their removal by mucociliary clearance (MCC) is facilitated by cilia beating and hydration of the ASL by active ion transport. Throughout the lung, secretion, ion transport and cilia beating are under purinergic control. Pulmonary epithelia release ATP into the ASL which acts in an autocrine fashion on P2Y2 (ATP) receptors. The enzymatic network describes in Chap. 2 then mounts a secondary wave of signaling by surface conversion of ATP into adenosine (ADO), which induces A2B (ADO) receptor-mediated responses. This chapter offers a comprehensive description of MCC and the extensive ramifications of the purinergic signaling network on pulmonary surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matsui H, Davis CW, Tarran R, Boucher RC (2000) Osmotic water permeabilities of cultured, well-differentiated normal and cystic fibrosis airway epithelia. J Clin Invest 105:1419–1427

    PubMed  CAS  Google Scholar 

  2. Olver RE, Strang LB (1974) Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the foetal lamb. J Physiol 241:327–357

    PubMed  CAS  Google Scholar 

  3. Widdicombe JH (2002) Regulation of the depth and composition of airway surface liquid. J Anat 201:313–318

    PubMed  CAS  Google Scholar 

  4. Alcorn D, Adamson TM, Lambert TF, Maloney JE, Ritchie BC, Robinson PM (1977) Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lung. J Anat 123:649–660

    PubMed  CAS  Google Scholar 

  5. Strang LB (1991) Fetal lung liquid: secretion and reabsorption. Physiol Rev 71:991–1016

    PubMed  CAS  Google Scholar 

  6. Boucher RC (1994) Human airway ion transport. Am J Respir Crit 150:271–281

    Google Scholar 

  7. Tarran R, Grubb BR, Parsons D, Picher M, Hirsh AJ, Davis CW, Boucher RC (2001) The CF salt controversy: in vivo observations and therapeutic approaches. Mol Cell 8:149–158

    Google Scholar 

  8. Smith PL, Frizzell RA (1984) Chloride secretion by canine tracheal epithelium: IV Basolateral membrane K permeability parallels secretion rate. J Membr Biol 77:187–199

    PubMed  CAS  Google Scholar 

  9. Sheppard DN, Welsh MJ (1999) Structure and function of the CFTR chloride channel. Physiol Rev 79:S23–S45

    PubMed  CAS  Google Scholar 

  10. Schwiebert EM, Egan ME, Hwang TH, Fulmer SB, Allen SS, Cutting GR, Guggino WB (1995) CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81:1063–1073

    PubMed  CAS  Google Scholar 

  11. Wei L, Vankeerberghen A, Cuppens H, Eggermont J, Cassiman JJ, Droogmans G, Nilius B (1999) Interaction between calcium-activated chloride channels and the cystic fibrosis transmembrane conductance regulator. Pflugers Arch 438:635–641

    PubMed  CAS  Google Scholar 

  12. Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC (1995) CFTR as a cAMP-dependent regulator of sodium channels. Science 269:847–850

    PubMed  CAS  Google Scholar 

  13. Anderson MP, Rich DP, Gregory RJ, Smith AE, Welsh MJ (1991) Generation of cAMP-activated chloride currents by expression of CFTR. Science 251:679–682

    PubMed  CAS  Google Scholar 

  14. Schwiebert EM, Benos DJ, Egan ME, Stutts MJ, Guggino WB (1999) CFTR is a conductance regulator as well as a chloride channel. Physiol Rev 79:S145–S166

    PubMed  CAS  Google Scholar 

  15. Hanrahan JW, Mathews CJ, Grygorczyk R, Tabcharani JA, Grzelczak Z, Chang XB, Riordan JR (1996) Regulation of the CFTR chloride channel from humans and sharks. J Exp Zool 275:283–291

    PubMed  CAS  Google Scholar 

  16. Lazarowski ER, Boucher RC (2009) Purinergic receptors in airway epithelia. Curr Opin Pharmacol 9:262–267

    PubMed  CAS  Google Scholar 

  17. Huang P, Gilmore E, Kultgen P, Barnes P, Milgram S, Stutts MJ (2004) Local regulation of cystic fibrosis transmembrane regulator and epithelial sodium channel in airway epithelium. Proc Am Thorac Soc 1:33–37

    PubMed  CAS  Google Scholar 

  18. Lazarowski ER, Tarran R, Grubb BR, van Heusden CA, Okada S, Boucher RC (2004) Nucleotide release provides a mechanism for airway surface liquid homeostasis. J Biol Chem 279:36855–36864

    PubMed  CAS  Google Scholar 

  19. Li Y, Wang W, Parker W, Clancy JP (2006) Adenosine regulation of cystic fibrosis transmembrane conductance regulator through prostenoids in airway epithelia. Am J Respir Cell Mol Biol 34:600–608

    PubMed  CAS  Google Scholar 

  20. González-Périz A, Clària J (2007) New approaches to the modulation of the cyclooxygenase-2 and 5-lipoxygenase pathways. Curr Top Med Chem 7:297–309

    PubMed  Google Scholar 

  21. Morse DM, Smullen JL, Davis CW (2001) Differential effects of UTP, ATP, and adenosine on ciliary activity of human nasal epithelial cells. Am J Physiol Cell Physiol 280:C1485–C1497

    PubMed  CAS  Google Scholar 

  22. Picher M, Burch LH, Hirsh AJ, Spychala J, Boucher RC (2003) Ecto 5′-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways. J Biol Chem 278:13468–13479

    PubMed  CAS  Google Scholar 

  23. Huang P, Lazarowski ER, Tarran R, Milgram SL, Boucher RC, Stutts MJ (2001) Compartmentalized autocrine signaling to cystic fibrosis transmembrane conductance regulator at the apical membrane of airway epithelial cells. Proc Natl Acad Sci USA 98:14120–14125

    PubMed  CAS  Google Scholar 

  24. Faria D, Schreiber R, Kunzelmann K (2009) CFTR is activated through stimulation of purinergic P2Y2 receptors. Pflügers Arch 457:1373–1380

    PubMed  CAS  Google Scholar 

  25. Knowles MR, Clarke LL, Boucher RC (1991) Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N Engl J Med 325:533–538

    PubMed  CAS  Google Scholar 

  26. Mason SJ, Paradiso AM, Boucher RC (1991) Regulation of transepithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium. Br J Pharmacol 103:1649–1656

    PubMed  CAS  Google Scholar 

  27. Gabriel SE, Makhlina M, Martsen E, Thomas EJ, Lethem MI, Boucher RC (2000) Permeabilization via the P2X7 purinoreceptor reveals the presence of a Ca2+-activated Cl- conductance in the apical membrane of murine tracheal epithelial cells. J Biol Chem 275:35028–35033

    PubMed  CAS  Google Scholar 

  28. Gabriel SE (2002) Calcium-activated Cl- conductance in the airway epithelium. In: Fuller CM (ed) Current topics in membranes. Elsevier Science, San Diego, pp 193–207

    Google Scholar 

  29. Hou M, Harden TK, Kuhn CM, Baldetorp B, Lazarowski E, Pendergast W, Moller S, Edvinsson L, Erlinge D (2002) UDP acts as a growth factor for vascular smooth muscle cells by activation of P2Y6 receptors. Am J Physiol 282:H784–H792

    CAS  Google Scholar 

  30. Zsembery A, Fortenberry JA, Liang L, Bebok Z, Tucker TA, Boyce AT, Braunstein GM, Welty E, Bell PD, Sorscher EJ, Clancy JP, Schwiebert EM (2004) Extracellular zinc and ATP restore chloride secretion across cystic fibrosis airway epithelia by triggering calcium entry. J Biol Chem 279:10720–10729

    PubMed  CAS  Google Scholar 

  31. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  32. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJV (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    PubMed  CAS  Google Scholar 

  33. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim W-S, Park SP, Lee J, Lee B, Kim B-M, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    PubMed  CAS  Google Scholar 

  34. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    PubMed  CAS  Google Scholar 

  35. Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY (2009) Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci USA 106:21413–21418

    PubMed  CAS  Google Scholar 

  36. Bove PF, Grubb BR, Okada SF, Ribeiro CM, Rogers TD, Randell SH, O’Neal WK, Boucher RC (2010) Human alveolar type II cells secrete and absorb liquid in response to local nucleotide signaling. J Biol Chem Nov 5; 285(45):34939–34949. Epub 2010, Aug 27

    PubMed  CAS  Google Scholar 

  37. Lazarowski ER, Homolya L, Boucher RC, Harden TK (1997) Direct demonstration of mechanically induced release of cellular UTP and its implication for uridine nucleotide receptor activation. J Biol Chem 272:24348–24354

    PubMed  CAS  Google Scholar 

  38. Kottgen M, Loffler T, Jacobi C, Nitschke R, Pavenstadt H, Schreiber R, Frische S, Nielsen S, Leipziger J (2003) P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport. J Clin Invest 111:371–379

    PubMed  CAS  Google Scholar 

  39. Donaldson SH, Lazarowski ER, Picher M, Knowles MR, Stutts MJ, Boucher RC (2000) Basal nucleotide levels, release, and metabolism in normal and cystic fibrosis airways. Mol Med 6:969–982

    PubMed  CAS  Google Scholar 

  40. Boucher RC, Stutts MJ, Bromberg PA, Gatzy JT (1981) Regional differences in airway surface liquid composition. J Appl Physiol 50:613–620

    PubMed  CAS  Google Scholar 

  41. Matthay MA, Landolt CC, Staub NC (1982) Differential liquid and protein clearance from the alveoli of anesthetized sheep. J Appl Physiol 53:96–104

    PubMed  CAS  Google Scholar 

  42. Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308

    PubMed  CAS  Google Scholar 

  43. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467

    PubMed  CAS  Google Scholar 

  44. Lingueglia E, Renard S, Voilley N, Waldmann R, Chassande O, Lazdunski M, Barbry P (1993) Molecular cloning and functional expression of different molecular forms of rat amiloride-binding proteins. Eur J Biochem 216:679–687

    PubMed  CAS  Google Scholar 

  45. Barker PM, Nguyen MS, Gatzy JT, Grubb B, Norman H, Hummler E, Rossier B, Boucher RC, Koller B (1998) Role of gENaC subunit in lung liquid clearance and electrolyte balance in newborn mice. Insights into perinatal adaptation and pseudohypoaldosteronism. J Clin Invest 102:1634–1640

    PubMed  CAS  Google Scholar 

  46. Mall M, Grubb BR, Harkema JR, O’Neal WK, Boucher RC (2004) Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 10:487–493

    PubMed  CAS  Google Scholar 

  47. Tarran R, Grubb BR, Gatzy JT, Davis CW, Boucher RC (2001) The relative roles of passive surface and active ion transport in the modulation of airway surface liquid volume and composition. J Gen Physiol 118:223–236

    Google Scholar 

  48. Bonny O, Hummler E (2000) Dysfunction of epithelial sodium transport: from human to mouse. Kidney Int 57:1313–1318

    PubMed  CAS  Google Scholar 

  49. Knight KK, Olson DR, Zhou R, Snyder PM (2006) Liddle’s syndrome mutations increase Na+ transport through dual effects on epithelial Na+ channel surface expression and proteolytic cleavage. Proc Natl Acad Sci USA 103:2805–2808

    PubMed  CAS  Google Scholar 

  50. Kerem E, Bistritzer T, Hanukoglu A, Hofman T, Zhou Z, Bennett W, Machaughlin E, Barker P, Nash M, Quittell L, Boucher R, Knowles MR (1999). Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism. N Engl J Med 341:156–162

    Google Scholar 

  51. Gaillard EA, Kota P, Gentzsch M, Dokholyan NV, Stutts MJ, Tarran R (2010) Regulation of the epithelial Na+ channel and airway surface liquid volume by serine proteases. Pflügers Arch 460:1–17

    PubMed  CAS  Google Scholar 

  52. Donaldson SH, Hirsh A, Li DC, Holloway G, Chao J, Boucher RC, Gabriel SE (2002) Regulation of the epithelial sodium channel by serine proteases in human airways. J Biol Chem 277:8338–8345

    PubMed  CAS  Google Scholar 

  53. Tong Z, Illek B, Bhagwandin VJ, Verghese GM, Caughey GH (2004) Prostasin, a membrane-anchored serine peptidase, regulates sodium currents in JME/CF15 cells, a cystic fibrosis airway epithelial cell line. Am J Physiol 287:L928–L935

    CAS  Google Scholar 

  54. Bruns JB, Carattino MD, Sheng S, Maarouf AB, Weisz OA, Pilewski JM, Hughey RP, Kleyman TR (2007) Epithelial Na+ channels are fully activated by furin- and prostasin-dependent release of an inhibitory peptide from the gamma-subunit. J Biol Chem 282:6153–6160

    PubMed  CAS  Google Scholar 

  55. Carattino MD, Hughey RP, Kleyman TR (2008) Proteolytic processing of the epithelial sodium channel gamma subunit has a dominant role in channel activation. J Biol Chem 283:25290–25295

    PubMed  CAS  Google Scholar 

  56. Tarran R, Trout L, Donaldson SH, Boucher RC (2006) Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia. J Gen Physiol 127:591–604

    PubMed  CAS  Google Scholar 

  57. Garcia-Caballero A, Rasmussen JE, Gaillard E, Watson MJ, Olsen JC, Donaldson SH, Stutts MJ, Tarran R (2009) SPLUNC1 regulates airway surface liquid volume by protecting ENaC from proteolytic cleavage. Proc Natl Acad Sci USA 106:11412–11417

    PubMed  CAS  Google Scholar 

  58. Inglis SK, Collett A, McAlroy HL, Wilson SM, Olver RE (1999) Effect of luminal nucleotides on Cl- secretion and Na+ absorption in distal bronchi. Pflugers Arch 438:621–627

    PubMed  CAS  Google Scholar 

  59. Mall M, Wissner A, Gonska T, Calenborn D, Kuehr J, Brandis M, Kunzelmann K (2000) Inhibition of amiloride-sensitive epithelial Na+ absorption by extracellular nucleotides in human normal and cystic fibrosis airways. Am J Respir Cell Mol Biol 23:755–761

    PubMed  CAS  Google Scholar 

  60. Devor DC, Singh AK, Lambert LC, DeLuca A, Frizzell RA, Bridges RJ (1999) Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. J Gen Physiol 113:743–760

    PubMed  CAS  Google Scholar 

  61. Kunzelmann K, Bachhuber T, Regeer R, Markovich D, Sun J, Schreiber R (2005) Purinergic inhibition of the epithelial Na+ transport via hydrolysis of PIP2. FASEB J 19:142–143

    PubMed  CAS  Google Scholar 

  62. Boucher RC, Stutts MJ, Knowless MR, Cantley L, Gatzy JT (1986) Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest 78(5):1245–1252

    Google Scholar 

  63. Gentzsch M, Dang H, Dang Y, Garcia-caballero A, Suchindran H, Boucher RC, Stutts MJ (2010) The cystic fibrosis transmembrane conductance regulator impedes proteolytic stimulation of the epithelial Na+ channel. J Biol Chem 285:32227–32232

    Google Scholar 

  64. Knowles MR, Boucher RC (2002) Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 109:571–577

    PubMed  CAS  Google Scholar 

  65. Thornton DJ, Rousseau K, McGuckin MA (2008) Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol 70:459–486

    PubMed  CAS  Google Scholar 

  66. Wine JJ (2007) Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system. Auton Neurosci 133:35–54

    PubMed  Google Scholar 

  67. Stutts MJ, Chinet TC, Mason SJ, Fullton JM, Clarke LL, Boucher RC (1992) Regulation of Cl- channels in normal and cystic fibrosis airway epithelial cells by extracellular ATP. Proc Natl Acad Sci USA 89:1621–1625

    PubMed  CAS  Google Scholar 

  68. Kim KC, Lee BC (1991) P2 purinoceptor regulation of mucin release by airway goblet cells in primary culture. Br J Pharmacol 103:1053–1056

    PubMed  CAS  Google Scholar 

  69. Davis CW, Dowell ML, Lethem M, Van Scott M (1992) Goblet cell degranulation in isolated canine tracheal epithelium: response to exogenous ATP, ADP, and adenosine. Am J Physiol 262:C1313–C1323

    PubMed  CAS  Google Scholar 

  70. Kunzelmann K, Mall M (2003) Pharmacotherapy of the ion transport defect in cystic fibrosis: role of purinergic receptor agonists and other potential therapeutics. Am J Respir Med 2:299–309

    PubMed  CAS  Google Scholar 

  71. Davis CW, Lazarowski E (2008) Coupling of airway ciliary activity and mucin secretion to mechanical stresses by purinergic signaling. Respir Physiol Neurobiol 163:208–213

    PubMed  CAS  Google Scholar 

  72. Grygorczyk R, Hanrahan JW (1997) CFTR-independent ATP release from epithelial cells triggered by mechanical stimuli. Am J Physiol 272:C1058–C1066

    PubMed  CAS  Google Scholar 

  73. Taylor AL, Kudlow BA, Marrs KL, Gruenert DC, Guggino WB, Schwiebert EM (1998) Bioluminescence detection of ATP release mechanisms in epithelia. Am J Physiol 275:C1391–C1406

    PubMed  CAS  Google Scholar 

  74. Hansen M, Boitano S, Dirksen ER, Sanderson MJ (1993) Intercellular calcium signaling induced by extracellular adenosine 5′-triphosphate and mechanical stimulation in airway epithelial cells. J Cell Sci 106:995–1004

    PubMed  CAS  Google Scholar 

  75. Homolya L, Steinberg TH, Boucher RC (2000) Cell to cell communication in response to mechanical stress via bilateral release of ATP and UTP in polarized epithelia. J Cell Biol 150:1349–1360

    PubMed  CAS  Google Scholar 

  76. Button B, Picher M, Boucher RC (2007) Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia. J Physiol 580:577–592

    PubMed  CAS  Google Scholar 

  77. Douillet CD, Robinson WP III, Zarzaur BL, Lazarowski ER, Boucher RC, Rich PB (2005) Mechanical ventilation alters airway nucleotides and purinoceptors in lung and extrapulmonary organs. Am J Respir Cell Mol Biol 32(Douillet CD):52–58

    PubMed  CAS  Google Scholar 

  78. Abdullah LH, Davis SW, Burch L, Yamauchi M, Randell SH, Nettesheim P, Davis CW (1996) P2u purinoceptor regulation of mucin secretion in SPOC1 cells, a goblet cell line from the airways. Biochem J 316:943–951

    PubMed  CAS  Google Scholar 

  79. Conway JD, Bartolotta T, Abdullah LH, Davis CW (2003) Regulation of mucin secretion from human bronchial epithelial cells grown in murine hosted xenografts. Am J Physiol 284:L945–L954

    CAS  Google Scholar 

  80. Kim KC, Hisatsune A, Kim DJ, Miyata T (2003) Pharmacology of airway goblet cell mucin release. J Pharmacol Sci 92:301–307

    PubMed  CAS  Google Scholar 

  81. Kemp PA, Sugar RA, Jackson AD (2004) Nucleotide-mediated mucin secretion from differentiated human bronchial epithelial cells. Am J Respir Cell Mol Biol 31:446–455

    PubMed  CAS  Google Scholar 

  82. Lethem MI, Dowell ML, Van Scott M, Yankaskas JR, Egan T, Boucher RC, Davis CW (1993) Nucleotide regulation of goblet cells in human airway epithelial explants: normal exocytosis in cystic fibrosis. Am J Respir Cell Mol Biol 9:315–322

    PubMed  CAS  Google Scholar 

  83. Davis CW, Abdullah LH (1997) In vitro models for airways mucin secretion. Pulm Pharmacol Ther 10:145–155

    PubMed  CAS  Google Scholar 

  84. Shin CY, Kim KC, Lee WJ, Jo MJ, Park KH, Dalby R, Ko KH (2000) Inhaled ATP causes mucin release from goblet cells of intact rats. Exp Lung Res 26:1–11

    PubMed  CAS  Google Scholar 

  85. Evans CM, Williams OW, Tuvim MJ, Nigam R, Mixides GP, Blackburn MR, DeMayo FJ, Burns AR, Smith C, Reynolds SD, Stripp BR, Dickey BF (2004) Mucin is produced by Clara cells in the proximal airways of antigen-challenged mice. Am J Respir Cell Mol Biol 31:382–394

    PubMed  CAS  Google Scholar 

  86. Kim KC, Park HR, Shin CY, Akiyama T, Ko KH (1996) Nucleotide-induced mucin release from primary hamster tracheal surface epithelial cells involves the P2u purinoceptor. Eur Respir J 9:542–548

    PubMed  CAS  Google Scholar 

  87. Wolff SC, Qi A-D, Harden TK, Nicholas RA (2005) Polarized expression of human P2Y receptors in epithelial cells from kidney, lung, and colon. Am J Physiol 288:C624–C632

    CAS  Google Scholar 

  88. Abbracchio MP, Burnstock G, Boeynaems J-M, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International union of pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    PubMed  CAS  Google Scholar 

  89. von Kügelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110:415–432

    Google Scholar 

  90. Davis CW (1997) Goblet cells: physiology and pharmacology. In: Rogers DF (ed) Airway mucus: basic mechanisms and clinical perspectives. Berkhauser, Basel, pp 150–177

    Google Scholar 

  91. Dubyak GR (2003) Knock-out mice reveal tissue-specific roles of P2Y receptor subtypes in different epithelia. Mol Pharmacol 63:773–776

    PubMed  CAS  Google Scholar 

  92. Ehre C, Zhu Y, Abdullah LH, Olsen J, Nakayama KI, Nakayama K, Messing RO, Davis CW (2007) nPKCepsilon, a P2Y2-R downstream effector in regulated mucin secretion from airway goblet cells. Am J Physiol 293:C1445–C1454

    CAS  Google Scholar 

  93. Davis C (2002) Regulation of mucin secretion in in vitro cellular models. Norvatis Found Symp 248:113–125

    CAS  Google Scholar 

  94. Davis CW, Dickey BF (2008) Regulated airway goblet cell mucin secretion. Ann Rev Physiol 70:487–512

    CAS  Google Scholar 

  95. Rossi AH, Salmon WC, Chua M, Davis CW (2007) Calcium signaling in human airway goblet cells following purinergic activation. Am J Physiol 292:L92–L98

    CAS  Google Scholar 

  96. Abdullah LH, Davis CW (2007) Regulation of airway goblet cell mucin secretion by tyrosine phosphorylation signaling pathways. Am J Physiol 293:L591–L599

    CAS  Google Scholar 

  97. Brose N, Rosenmund C (2002) Move over protein kinase C, you’ve got company: alternative cellular effectors of diacylglycerol and phorbol esters. J Cell Sci 115:4399–4411

    PubMed  CAS  Google Scholar 

  98. Colón-González F, Kazanietz MG (2006) C1 domains exposed: from diacylglycerol binding to protein-protein interactions. Biochim Biophys Acta 1761:827–837

    PubMed  Google Scholar 

  99. Putney JW (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231:10–22

    PubMed  CAS  Google Scholar 

  100. Katan M, Rodriguez R, Matsuda M, Newbatt YM, Aherne GW (2003) Structural and mechanistic aspects of phospholipase C gamma regulation. Adv Enzyme Regul 43:77–85

    PubMed  CAS  Google Scholar 

  101. Harden TK, Sondek J (2006) Regulation of phospholipase C isozymes by Ras superfamily GTPases. Ann Rev Pharmacol Toxicol 46:355–379

    CAS  Google Scholar 

  102. Suh PG, Park JI, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun S, Ryu SH (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41:415–434

    PubMed  CAS  Google Scholar 

  103. Siksou L, Varoqueaux F, Pascual O, Triller A, Brose N, Marty S (2009) A common molecular basis for membrane docking and functional priming of synaptic vesicles. Eur J Neurosci 30:49–56

    PubMed  Google Scholar 

  104. Lueck A, Yin HL, Kwiatkowski DJ, Allen PG (2000) Calcium regulation of gelsolin and adseverin: a natural test of the helix latch hypothesis. Biochemistry 39:5274–5279

    PubMed  CAS  Google Scholar 

  105. Trifaró JM, Gasman S, Gutiérrez LM (2008) Cytoskeletal control of vesicle transport and exocytosis in chromaffin cells. Acta Physiol 192:165–172

    Google Scholar 

  106. Malsam J, Kreye S, Söllner T (2008) Membrane traffic in the secretory pathway. Cell Mol Life Sci 65:2814–2832

    PubMed  CAS  Google Scholar 

  107. Südhof TC (2002) Synaptotagmins: why so many? J Biol Chem 277:7629–7632

    PubMed  Google Scholar 

  108. Chapman ER (2008) How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem 77:615–641

    PubMed  CAS  Google Scholar 

  109. Hille B, Billiard J, Babcock DF, Nguyen T, Koh DS (1999) Stimulation of exocytosis without a calcium signal. J Physiol 520:23–31

    PubMed  CAS  Google Scholar 

  110. Abdullah LH, Conway JD, Cohn JA, Davis CW (1997) Protein kinase C and Ca2+ activation of mucin secretion in airway goblet cells. Am J Physiol 273:L201–L210

    PubMed  CAS  Google Scholar 

  111. Kim KC, Nassiri J, Brody JS (1989) Mechanisms of airway goblet cell mucin release: studies with cultured tracheal surface epithelial cells. Am J Respir Cell Mol Biol 1:137–143

    PubMed  CAS  Google Scholar 

  112. Dedkova EN, Sigova AA, Zinchenko VP (2000) Mechanism of action of calcium ionophores on intact cells: ionophore-resistant cells. Membr Cell Biol 13:357–368

    PubMed  CAS  Google Scholar 

  113. Scott CE, Abdullah LH, Davis CW (1998) Ca2+ and protein kinase C activation of mucin granule exocytosis in permeabilized SPOC1 cells. Am J Physiol 275:C285–C292

    PubMed  CAS  Google Scholar 

  114. Rossi AH, Sears PR, Davis CW (2004) Ca2+ dependency of Ca2+-independent exocytosis in SPOC1 airway goblet cells. J Physiol 559:555–565

    PubMed  CAS  Google Scholar 

  115. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408

    PubMed  CAS  Google Scholar 

  116. Nguyen T, Chin W-C, Verdugo P (1998) Role of Ca2+/K+ ion exchange in intracellular storage and release of Ca2+. Nature 395:908–912

    PubMed  CAS  Google Scholar 

  117. Nagy G, Kim JH, Pang ZP, Matti U, Rettig J, Sudhof TC, Sorensen JB (2006) Different effects on fast exocytosis induced by synaptotagmin 1 and 2 isoforms and abundance but not by phosphorylation. J Neurosci 26:632–643

    PubMed  CAS  Google Scholar 

  118. Specian RD, Oliver MG (1991) Functional biology of intestinal goblet cells. Am J Physiol 260:C183–C193

    PubMed  CAS  Google Scholar 

  119. Jeffery PK, Li D (1997) Airway mucosa: secretory cells, mucus and mucin genes. Eur Respir J 10:1655–1662

    PubMed  CAS  Google Scholar 

  120. Verdugo P, Deyrup-Olsen I, Aitken M, Villalon M, Johnson D (1987) Molecular mechanism of mucin secretion: I. The role of intragranular charge shielding. J Dent Res 66:506–508

    PubMed  CAS  Google Scholar 

  121. Wagner D, Puchelle E, Hinnrasky J, Girard P, Balossier G (1994) Quantitative X-ray microanalysis of P, Ca, and S in the mucus secretory granules of the cryofixed frog palate epithelium. Microsc Res Tech 28:141–148

    PubMed  CAS  Google Scholar 

  122. Petersen OH (1996) Can Ca2+ be released from secretory granules or synaptic vesicles? Trends Neurosci 19:411–413

    PubMed  CAS  Google Scholar 

  123. Yoo SH (2010) Secretory granules in inositol 1, 4, 5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells. FASEB J 24:653–664

    PubMed  CAS  Google Scholar 

  124. Chin WC, Quesada I, Nguyen T, Verdugo P (2002) Oscillations of pH inside the secretory granule control the gain of Ca2+ release for signal transduction in goblet cell exocytosis. Norvatis Found Symp 248:132–141

    CAS  Google Scholar 

  125. Gerasimenko OV, Gerasimenko JV, Belan PV, Petersen OH (1996) Inositol trisphosphate and cyclic ADP-ribose-mediated release of Ca2+ from single isolated pancreatic zymogen granules. Cell 84:473–480

    PubMed  CAS  Google Scholar 

  126. Blondel O, Bell GI, Seino S (1995) Inositol 1, 4, 5-trisphosphate receptors, secretory granules and secretion in endocrine and neuroendocrine cells. Trends Neurosci 18:157–161

    PubMed  CAS  Google Scholar 

  127. Yule DI, Ernst SA, Ohnishi H, Wojcikiewicz RJ (1997) Evidence that zymogen granules are not a physiologically relevant calcium pool. Defining the distribution of inositol 1,4,5-trisphosphate receptors in pancreatic acinar cells. J Biol Chem 272:9093–9098

    PubMed  CAS  Google Scholar 

  128. Nucifora FC Jr, Sharp AH, Milgram SL, Ross CA (1996) Inositol 1,4,5-trisphosphate receptors in endocrine cells: localization and association in hetero- and homotetramers. Mol Biol Cell 7:949–960

    PubMed  CAS  Google Scholar 

  129. Ravazzola M, Halban PA, Orci L (1996) Inositol 1, 4, 5-trisphosphate receptor subtype 3 in pancreatic islet cell secretory granules revisited. Proc Natl Acad Sci USA 93:2745–2748

    PubMed  CAS  Google Scholar 

  130. Thorn P (1993) Spatial aspects of Ca2+ signaling in pancreatic acinar cells. J Exp Biol 184:129–144

    PubMed  CAS  Google Scholar 

  131. Blondel O, Moody MM, Depaoli AM, Sharp AH, Ross CA, Swift H, Bell GI (1994) Localization of inositol trisphosphate receptor subtype 3 to insulin and somatostatin secretory granules and regulation of expression in islets and insulinoma cells. Proc Natl Acad Sci USA 91:7777–7781

    PubMed  CAS  Google Scholar 

  132. Meldolesi J, Pozzan T (1995) IP3 receptors and secretory granules. Trends Neurosci 18:340–341

    PubMed  CAS  Google Scholar 

  133. Moreno A, Lobatón CD, Santodomingo J, Vay L, Hernández-SanMiguel E, Rizzuto R, Montero M, Alvarez J (2005) Calcium dynamics in catecholamine-containing secretory vesicles. Cell Calcium 37:555–564

    PubMed  CAS  Google Scholar 

  134. Tuvim MJ, Mospan AR, Burns KA, Chua M, Mohler PJ, Melicoff E, Adachi R, Ammar-Aouchiche Z, Davis CW, Dickey BF (2009) Synaptotagmin 2 couples mucin granule exocytosis to Ca2+ signaling from endoplasmic reticulum. J Biol Chem 284:9781–9787

    PubMed  CAS  Google Scholar 

  135. Quesada I, Chin W-C, Steed J, Campos-Bedolla P, Verdugo P (2001) Mouse mast cell secretory granules can function as intracellular ionic oscillators. Biophys J 80:2133–2139

    PubMed  CAS  Google Scholar 

  136. Quesada I, Chin W-C, Verdugo P (2003) ATP-independent luminal oscillations and release of Ca2+ and H+ from mast cell secretory granules: implications for signal transduction. Biophys J 85:963–970

    PubMed  Google Scholar 

  137. Gerasimenko JV, Sherwood M, Tepikin AV, Petersen OH, Gerasimenko OV (2006) NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area. J Cell Sci 119:226–238

    PubMed  CAS  Google Scholar 

  138. Duman JG, Chen L, Palmer AE, Hille B (2006) Contributions of intracellular compartments to calcium dynamics: implicating an acidic store. Traffic 7:859–872

    PubMed  CAS  Google Scholar 

  139. Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A (2002) NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111:703–708

    PubMed  CAS  Google Scholar 

  140. Mandi M, Bak J (2008) Nicotinic acid adenine dinucleotide phosphate (NAADP) and Ca2+ mobilization. J Recept Signal Transduct Res 28:163–184

    PubMed  CAS  Google Scholar 

  141. Smith GD, Dai LX, Miura RM, Sherman A (2001) Asymptotic analysis of buffered calcium diffusion near a point source. Siam J Appl Math 61:1816–1838

    CAS  Google Scholar 

  142. Hay JC (2007) Calcium: a fundamental regulator of intracellular membrane fusion? EMBO Rep 8:236–240

    PubMed  CAS  Google Scholar 

  143. Rizo J, Chen X, Araç D (2006) Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol 16:339–350

    PubMed  CAS  Google Scholar 

  144. Cho W, Stahelin RV (2006) Membrane binding and subcellular targeting of C2 domains. Biochim Biophys Acta 1761:838–849

    PubMed  CAS  Google Scholar 

  145. Craxton M (2004) Synaptotagmin gene content of the sequenced genomes. BMC Genomics 5:43

    PubMed  Google Scholar 

  146. Li C, Davletov BA, Südhof TC (1995) Distinct Ca2+ and Sr2+ binding properties of synaptotagmins. Definition of candidate Ca2+ sensors for the fast and slow components of neurotransmitter release. J Biol Chem 270:24898–24902

    PubMed  CAS  Google Scholar 

  147. Schonn JS, Maximov A, Lao Y, Sudhof TC, Sorensen JB (2008) Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells. Proc Natl Acad Sci USA 105:3998–4003

    PubMed  CAS  Google Scholar 

  148. Xu J, Mashimo T, Südhof TC (2007) Synaptotagmin-1, -2, and -9: Ca2+ sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54:567–581

    PubMed  CAS  Google Scholar 

  149. Sun J, Pang ZP, Qin D, Fahim AT, Adachi R, Sudhof TC (2007) A dual Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450:676–682

    PubMed  CAS  Google Scholar 

  150. Melicoff E, Sansores-Garcia L, Gomez A, Moreira DC, Datta P, Thakur P, Petrova Y, Siddiqi T, Murthy JN, Dickey BF, Heidelberger R, Adachi R (2009) Synaptotagmin-2 controls regulated exocytosis but not other secretory responses of mast cells. J Biol Chem 284:19445–19451

    PubMed  CAS  Google Scholar 

  151. Pang ZP, Melicoff E, Padgett D, Liu Y, Teich AF, Dickey BF, Lin W, Adachi R, Sudhof TC (2006) Synaptotagmin-2 is essential for survival and contributes to Ca2+ triggering of neurotransmitter release in central and neuromuscular synapses. J Neurosci 26:13493–13504

    PubMed  CAS  Google Scholar 

  152. Von Neergaard K (1929) Neue Auffassungen uber einen Grundbegriff der Atemmechanik. Z Ges Exptl Med 66:373–394

    Google Scholar 

  153. Clements JA (1997) Lung surfactant: a personal perspective. Ann Rev Physiol 59:1–21

    CAS  Google Scholar 

  154. Pattle RE (1965) Surface lining of lung alveoli. Physiol Rev 45:48–79

    PubMed  CAS  Google Scholar 

  155. Avery ME, Mead J (1959) Surface properties in relation to atelectasis and hyaline membrane disease. AMA J Dis Child 97:517–523

    PubMed  CAS  Google Scholar 

  156. Campiche M (1960) Lamellar inclusions of the alveolar cells in the lung of the young rat. Relation between ultrastructure and fixation. J Ultrastruct Res 3:302–312

    PubMed  CAS  Google Scholar 

  157. Pérez-Gil J (2008) Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. Biochim Biophys Acta 1778:1676–1695

    PubMed  Google Scholar 

  158. Ryan US, Ryan JW, Smith DS (1975) Alveolar type II cells: studies on the mode of release of lamellar bodies. Tisue Cell 7:587–599

    CAS  Google Scholar 

  159. Rooney SA, Young SL, Mendelson CR (1994) Molecular and cellular processing of lung surfactant. FASEB J 8:957–967

    PubMed  CAS  Google Scholar 

  160. Van Golde LM, Batenburg JJ, Robertson B (1988) The pulmonary surfactant system: biochemical aspects and functional significance. Physiol Rev 68:374–455

    PubMed  Google Scholar 

  161. Kikkawa Y, Smith F (1983) Cellular and biochemical aspects of pulmonary surfactant in health and disease. Lab Invest 49:122–139

    PubMed  CAS  Google Scholar 

  162. Veldhuizen R, Nag K, Orgeig S, Possmayer F (1998) The role of lipids in pulmonary surfactant. Biochim Biophys Acta 1408:90–108

    PubMed  CAS  Google Scholar 

  163. Askin FB, Kuhn C (1971) The cellular origin of pulmonary surfactant. Lab Invest 25:260–268

    PubMed  CAS  Google Scholar 

  164. Veldhuizen EJ, Haagsman HP (2000) Role of pulmonary surfactant components in surface film formation and dynamics. Biochim Biophys Acta 1467:255–270

    PubMed  CAS  Google Scholar 

  165. Schürch S, Green FH, Bachofen H (1998) Formation and structure of surface films: captive bubble surfactometry. Biochim Biophys Acta 1408:180–202

    PubMed  Google Scholar 

  166. Bates SR, Tao J-Q, Notarfrancesco K, DeBolt K, Shuman H, Fisher AB (2003) Effect of surfactant protein A on granular pneumocyte surfactant secretion in vitro. Am J Physiol 285:L1055–L1065

    CAS  Google Scholar 

  167. Gilfillan AM, Hollingsworth M, Jones AW (1983) The pharmacological modulation of [3 H]-disaturated phosphatidylcholine overflow from perifused lung slices of adult rats: a new method for the study of lung surfactant secretion. Br J Pharmacol 79:363–371

    PubMed  CAS  Google Scholar 

  168. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  169. Welsch U, Müller W (1980) Electron microscopic studies of reptilian lung innervation. Z Mikrosk Anat Forsch 94:435–444

    PubMed  CAS  Google Scholar 

  170. Tatur S, Groulx N, Orlov SN, Grygorczyk R (2007) Ca2+-dependent ATP release from A549 cells involves synergistic autocrine stimulation by coreleased uridine nucleotides. J Physiol 584:419–435

    PubMed  CAS  Google Scholar 

  171. Patel AS, Reigada D, Mitchell CH, Bates SR, Margulies SS, Koval M (2005) Paracrine stimulation of surfactant secretion by extracellular ATP in response to mechanical deformation. Am J Physiol 289:L489–L496

    CAS  Google Scholar 

  172. Ashino Y, Ying X, Dobbs LG, Bhattacharya J (2000) [Ca2+]i oscillations regulate type II cell exocytosis in the pulmonary alveolus. Am J Physiol 279:L5–L13

    CAS  Google Scholar 

  173. Dietl P, Frick M, Mair N, Bertocchi C, Haller T (2004) Pulmonary consequences of a deep breath revisited. Biol Neonate 85:299–304

    PubMed  Google Scholar 

  174. Faridy EE (1976) Effect of distension on release of surfactant in excised dogs’ lungs. Respir Physiol 27:99–114

    PubMed  CAS  Google Scholar 

  175. Hildebran JN, Goerke J, Clements JA (1981) Surfactant release in excised rat lung is stimulated by air inflation. J Appl Physiol 51:905–910

    PubMed  CAS  Google Scholar 

  176. Massaro GD, Massaro D (1983) Morphologic evidence that large inflations of the lung stimulate secretion of surfactant. Am Rev Respir Dis 127:235–236

    PubMed  CAS  Google Scholar 

  177. McClenahan JB, Urtnowski A (1967) Effect of ventilation on surfactant, and its turnover rate. J Appl Physiol 23:215–220

    PubMed  CAS  Google Scholar 

  178. Nicholas TE, Barr HA (1981) Control of release of surfactant phospholipids in the isolated perfused rat lung. J Appl Physiol 51:90–98

    PubMed  CAS  Google Scholar 

  179. Nicholas TE, Power JH, Barr HA (1982) The pulmonary consequences of a deep breath. Respir Physiol 49:315–324

    PubMed  CAS  Google Scholar 

  180. Nicholas TE, Power JH, Barr HA (1982) Surfactant homeostasis in the rat lung during swimming exercise. J Appl Physiol 53:1521–1528

    PubMed  CAS  Google Scholar 

  181. Nicholas TE, Barr HA (1983) The release of surfactant in rat lung by brief periods of hyperventilation. Respir Physiol 52:69–83

    PubMed  CAS  Google Scholar 

  182. Wirtz HR, Dobbs LG (2000) The effects of mechanical forces on lung functions. Respir Physiol 119:1–17

    PubMed  CAS  Google Scholar 

  183. Tschumperlin DJ, Margulies SS (1999) Alveolar epithelial surface area-volume relationship in isolated rat lungs. J Appl Physiol 86:2026–2033

    PubMed  CAS  Google Scholar 

  184. Frick M, Bertocchi C, Jennings P, Haller T, Mair N, Singer W, Pfaller W, Ritsch-Marte M, Dietl P (2004) Ca2+ entry is essential for cell strain-induced lamellar body fusion in isolated rat type II pneumocytes. Am J Physiol 286:L210–L220

    CAS  Google Scholar 

  185. Wirtz HR, Dobbs LG (1990) Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250:1266–1269

    PubMed  CAS  Google Scholar 

  186. Felder E, Siebenbrunner M, Busch T, Fois G, Miklavc P, Walther P, Dietl P (2008) Mechanical strain of alveolar type II cells in culture: changes in the transcellular cytokeratin network and adaptations. Am J Physiol 295:L849–L857

    CAS  Google Scholar 

  187. Gajic O, Lee J, Doerr CH, Berrios JC, Myers JL, Hubmayr RD (2003) Ventilator-induced cell wounding and repair in the intact lung. Am J Respir Crit Care Med 167:1057–1063

    PubMed  Google Scholar 

  188. Sabirov RZ, Okada Y (2005) ATP release via anion channels. Purinergic Signal 1:311–328

    PubMed  CAS  Google Scholar 

  189. Olver RE, Walters DV, Wilson SM (2004) Developmental regulation of lung liquid transport. Annu Rev Physiol 66:77–101

    PubMed  CAS  Google Scholar 

  190. Garcia-Verdugo I, Ravasio A, de Paco EG, Synguelakis M, Ivanova N, Kanellopoulos J, Haller T (2008) Long-term exposure to LPS enhances the rate of stimulated exocytosis and surfactant secretion in alveolar type II cells and upregulates P2Y2 receptor expression. Am J Physiol 295:L708–L717

    CAS  Google Scholar 

  191. Griese M, Gobran LI, Rooney SA (1991) ATP-stimulated inositol phospholipid metabolism and surfactant secretion in rat type II pneumocytes. Am J Physiol 260:L586–L593

    PubMed  CAS  Google Scholar 

  192. Gilfillan AM, Rooney SA (1987) Purinoceptor agonists stimulate phosphatidylcholine secretion in primary cultures of adult rat type II pneumocytes. Biochim Biophys Acta 917:18–23

    PubMed  CAS  Google Scholar 

  193. Dorn CC, Rice WR, Singleton FM (1989) Calcium mobilization and response recovery following P2-purinoceptor stimulation of rat isolated alveolar type II cells. Br J Pharmacol 97:163–170

    PubMed  CAS  Google Scholar 

  194. Rice WR (1990) Effects of extracellular ATP on surfactant secretion. Ann NY Acad Sci 603:64–74

    PubMed  CAS  Google Scholar 

  195. Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA (2007) Regulation of surfactant secretion in alveolar type II cells. Am J Physiol 293:L259–L271

    CAS  Google Scholar 

  196. Chander A, Fisher AB (1990) Regulation of lung surfactant secretion. Am J Physiol 258:L241–L253

    PubMed  CAS  Google Scholar 

  197. Mason RJ, Voelker DR (1998) Regulatory mechanisms of surfactant secretion. Biochim Biophys Acta 1408:226–240

    PubMed  CAS  Google Scholar 

  198. Rooney SA (1998) Regulation of surfactant secretion. R.G. Landes Company, Austin

    Google Scholar 

  199. Rooney SA (2001) Regulation of surfactant secretion. Comp Biochem Physiol A Mol Integr Physiol 139:233–243

    Google Scholar 

  200. Wright JR, Dobbs LG (1991) Regulation of pulmonary surfactant secretion and clearance. Annu Rev Physiol 53:395–414

    PubMed  CAS  Google Scholar 

  201. Gobran LI, Xu ZX, Lu Z, Rooney SA (1994) P2u purinoceptor stimulation of surfactant secretion coupled to phosphatidylcholine hydrolysis in type II cells. Am J Physiol 267:L625–L633

    PubMed  CAS  Google Scholar 

  202. Gobran LI, Rooney SA (1997) Adenylate cyclase-coupled ATP receptor and surfactant secretion in type II pneumocytes from newborn rats. Am J Physiol 272:L187–L196

    PubMed  CAS  Google Scholar 

  203. Warburton D, Buckley S, Cosico L (1989) P1 and P2 purinergic receptor signal transduction in rat type II pneumocytes. J Appl Physiol 66:901–905

    PubMed  CAS  Google Scholar 

  204. Gobran LI, Xu Z-X, Rooney SA (1998) PKC isoforms and other signaling proteins involved in surfactant secretion in developing rat type II cells. Am J Physiol 274:L901–L907

    PubMed  CAS  Google Scholar 

  205. Rooney SA, Gobran LI (1993) Activation of phospholipase D in rat type II pneumocytes by ATP and other surfactant secretagogues. Am J Physiol 264:L133–L140

    PubMed  CAS  Google Scholar 

  206. Chander A, Sen N, Wu AM, Spitzer AR (1995) Protein kinase C in ATP regulation of lung surfactant secretion in type II cells. Am J Physiol 268:L108–L116

    PubMed  CAS  Google Scholar 

  207. Gobran LI, Rooney SA (1999) Surfactant secretagogue activation of protein kinase C isoforms in cultured rat type II cells. Am J Physiol 277:L251–L256

    PubMed  CAS  Google Scholar 

  208. Frick M, Eschertzhuber S, Haller T, Mair N, Dietl P (2001) Secretion in alveolar type II cells at the interface of constitutive and regulated exocytosis. Am J Respir Cell Mol Biol 25:306–315

    PubMed  CAS  Google Scholar 

  209. Sano K, Voelker DR, Mason RJ (1985) Involvement of protein kinase C in pulmonary surfactant secretion from alveolar type II cells. J Biol Chem 260:12725–12729

    PubMed  CAS  Google Scholar 

  210. Haller T, Ortmayr J, Friedrich F, Volkl H, Dietl P (1998) Dynamics of surfactant release in alveolar type II cells. Proc Natl Acad Sci USA 95:1579–1584

    PubMed  CAS  Google Scholar 

  211. Rice WR, Singleton FM (1987) P2Y-purinoceptor regulation of surfactant secretion from rat isolated alveolar type II cells is associated with mobilization of intracellular calcium. Br J Pharmacol 91:833–838

    PubMed  CAS  Google Scholar 

  212. Haller T, Dietl P, Pfaller K, Frick M, Mair N, Paulmichl M, Hess MW, Furst J, Maly K (2001) Fusion pore expansion is a slow, discontinuous, and Ca2+-dependent process regulating secretion from alveolar type II cells. J Cell Biol 155:279–290

    PubMed  CAS  Google Scholar 

  213. Dietl P, Haller T (2005) Exocytosis of lung surfactant: from the secretory vesicle to the air-liquid interface. Annu Rev Physiol 67:595–621

    PubMed  CAS  Google Scholar 

  214. Miklavc P, Albrecht S, Wittekindt OH, Schullian P, Haller T, Dietl P (2009) Existence of exocytotic hemifusion intermediates with a lifetime of up to seconds in type II pneumocytes. Biochem J 424:7–14

    PubMed  CAS  Google Scholar 

  215. Jahn R, Lang T, Südhof TC (2003) Membrane fusion. Cell 112:519–533

    PubMed  CAS  Google Scholar 

  216. Haller T, Auktor K, Frick M, Mair N, Dietl P (1999) Threshold calcium levels for lamellar body exocytosis in type II pneumocytes. Am J Physiol 277:L893–L900

    PubMed  CAS  Google Scholar 

  217. Pian MS, Dobbs LG (1994) Activation of G proteins may inhibit or stimulate surfactant secretion in rat alveolar type II cells. Am J Physiol 266:L375–L381

    PubMed  CAS  Google Scholar 

  218. Pian MS, Dobbs LG, Düzgünes N (1988) Positive correlation between cytosolic free calcium and surfactant secretion in cultured rat alveolar type II cells. Biochim Biophys Acta 960:43–53

    PubMed  CAS  Google Scholar 

  219. Sano K, Voelker DR, Mason RJ (1987) Effect of secretagogues on cytoplasmic free calcium in alveolar type II epithelial cells. Am J Physiol 253:C679–C686

    PubMed  CAS  Google Scholar 

  220. Griese M, Gobran LI, Rooney SA (1993) Signal-transduction mechanisms of ATP-stimulated phosphatidylcholine secretion in rat type II pneumocytes: interactions between ATP and other surfactant secretagogues. Biochim Biophys Acta 1167:85–93

    PubMed  CAS  Google Scholar 

  221. Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Sudhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727

    PubMed  CAS  Google Scholar 

  222. Caohuy H, Srivastava M, Pollard HB (1996) Membrane fusion protein synexin (annexin VII) as a Ca2+/GTP sensor in exocytotic secretion. Proc Natl Acad Sci USA 93:10797–10802

    PubMed  CAS  Google Scholar 

  223. Sen N, Spitzer AR, Chander A (1997) Calcium-dependence of synexin binding may determine aggregation and fusion of lamellar bodies. Biochem J 322:103–109

    PubMed  CAS  Google Scholar 

  224. Liu L, Chander A (1995) Stilbene disulfonic acids inhibit synexin-mediated membrane aggregation and fusion. Biochim Biophys Acta 1254:274–282

    PubMed  Google Scholar 

  225. Chander A, Sen N, Spitzer AR (2001) Synexin and GTP increase surfactant secretion in permeabilized alveolar type II cells. Am J Physiol 280:L991–L998

    CAS  Google Scholar 

  226. Chander A, Wu RD (1991) In vitro fusion of lung lamellar bodies and plasma membrane is augmented by lung synexin. Biochim Biophys Acta 1086:157–166

    PubMed  CAS  Google Scholar 

  227. Chander A, Sen N, Naidu DG, Spitzer AR (2003) Calcium ionophore and phorbol ester increase membrane binding of annexin a7 in alveolar type II cells. Cell Calcium 33:11–17

    PubMed  CAS  Google Scholar 

  228. Mair N, Haller T, Dietl P (1999) Exocytosis in alveolar type II cells revealed by cell capacitance and fluorescence measurements. Am J Physiol 276:L376–L382

    PubMed  CAS  Google Scholar 

  229. Muallem S, Kwiatkowska K, Xu X, Yin HL (1995) Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J Cell Biol 128:589–598

    PubMed  CAS  Google Scholar 

  230. Holt M, Riedel D, Stein A, Schuette C, Jahn R (2008) Synaptic vesicles are constitutively active fusion machines that function independently of Ca2+. Curr Biol 18:715–722

    PubMed  CAS  Google Scholar 

  231. Malacombe M, Bader MF, Gasman S (2006) Exocytosis in neuroendocrine cells: new tasks for actin. Biochim Biophys Acta 1763:1175–1183

    PubMed  CAS  Google Scholar 

  232. Ehre C, Rossi AH, Abdullah LH, De Pestel K, Hill S, Olsen JC, Davis CW (2005) Barrier role of actin filaments in regulated mucin secretion from airway goblet cells. Am J Physiol 288:C46–C56

    CAS  Google Scholar 

  233. Rose F, Kurth-Landwehr C, Sibelius ULF, Reuner Karl H, Aktories K, Seeger W, Grimminger F (1999) Role of actin depolymerization in the surfactant secretory response of alveolar epithelial type II cells. Am J Respir Crit Care Med 159:206–212

    PubMed  CAS  Google Scholar 

  234. Kooijman EE, Chupin V, De Kruijff B, Burger KNJ (2003) Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4:162–174

    PubMed  CAS  Google Scholar 

  235. Zeniou-Meyer M, Zabari N, Ashery U, Chasserot-Golaz S, Haeberlé AM, Demais V, Bailly Y, Gottfried I, Nakanishi H, Neiman AM, Du G, Frohman MA, Bader MF, Vitale N (2007) Phospholipase D1 production of phosphatidic acid at the plasma membrane promotes exocytosis of large dense-core granules at a late stage. J Biol Chem 282:21746–21757

    PubMed  CAS  Google Scholar 

  236. Williams MC (1977) Conversion of lamellar body membranes into tubular myelin in alveoli of fetal rat lungs. J Cell Biol 72:260–277

    PubMed  CAS  Google Scholar 

  237. Haller T, Dietl P, Stockner H, Frick M, Mair N, Tinhofer I, Ritsch A, Enhorning G, Putz G (2004) Tracing surfactant transformation from cellular release to insertion into an air-liquid interface. Am J Physiol 286:L1009–L1015

    CAS  Google Scholar 

  238. Miklavc P, Wittekindt OH, Felder E, Dietl P (2009) Ca2+-dependent actin coating of lamellar bodies after exocytotic fusion: a prerequisite for content release or kiss-and-run. Ann NY Acad Sci 1152:43–52

    PubMed  CAS  Google Scholar 

  239. Singer W, Frick M, Haller T, Bernet S, Ritsch-Marte M, Dietl P (2003) Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers. Biophys J 84:1344–1351

    PubMed  CAS  Google Scholar 

  240. Tsilibary EC, Williams MC (1983) Actin in peripheral rat lung: S1 labeling and structural changes induced by cytochalasin. J Histochem Cytochem 31:1289–1297

    PubMed  CAS  Google Scholar 

  241. van Weeren L, de Graaff AM, Jamieson JD, Batenburg JJ, Valentijn JA (2004) Rab3D and actin reveal distinct lamellar body subpopulations in alveolar epithelial type II cells. Am J Respir Cell Mol Biol 30:288–295

    PubMed  Google Scholar 

  242. Yu HE, Bement WM (2007) Control of local actin assembly by membrane fusion-dependent compartment mixing. Nat Cell Biol 9:149–159

    PubMed  CAS  Google Scholar 

  243. Breeze RG, Wheeldon E (1977) The cells of the pulmonary airways. Am Rev Respir Dis 116:705–777

    PubMed  CAS  Google Scholar 

  244. Serafini SM, Michaelson ED (1977) Length and distribution of cilia in human and canine airways. Bull Eur Physiopathol Respir 13:551–559

    PubMed  CAS  Google Scholar 

  245. Nogales E, Whittaker M, Milligan RA, Downing KH (1999) High-resolution model of the microtubule. Cell 96:79–88

    PubMed  CAS  Google Scholar 

  246. Ostrowski LE, Blackburn K, Radde KM, Moyer MB, Schlatzer DM, Moseley A, Boucher RC (2002) A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 1:451–465

    PubMed  CAS  Google Scholar 

  247. Satir P, Sleigh MA (1990) The physiology of cilia and mucociliary interactions. Annu Rev Physiol 52:137–155

    PubMed  CAS  Google Scholar 

  248. Lohmann K (1929) Über die Pyrophosphatfraktion im Muskel. Naturwissenschaften 17:624–625

    CAS  Google Scholar 

  249. Goldacre RJ, Lorch IJ (1950) Folding and unfolding of protein molecules in relation to cytoplasmic streaming, amoeboid movement and osmotic work. Nature 166:497–500

    PubMed  CAS  Google Scholar 

  250. Sutto Z, Conner GE, Salathe M (2004) Regulation of human airway ciliary beat frequency by intracellular pH. J Physiol 560:519–532

    PubMed  CAS  Google Scholar 

  251. Gibbons IR, Rowe AJ (1965) Dynein: a protein with adenosine triphosphatase activity from cilia. Science 149:424–426

    PubMed  CAS  Google Scholar 

  252. Drury AN, Szent-Gyorgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68:213–237

    PubMed  CAS  Google Scholar 

  253. Vorhaus EF, Deyrup IJ (1953) The effect of adenosine triphosphate on the cilia of the pharyngeal mucosa of the frog. Science 118:553–554

    PubMed  CAS  Google Scholar 

  254. Burnstock G (1976) Purinergic receptors. J Theor Biol 62:491–503

    PubMed  CAS  Google Scholar 

  255. Burnstock G (1978) A basis for distinguishing two types of purinergic receptors. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven, New York, pp 107–118

    Google Scholar 

  256. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    PubMed  CAS  Google Scholar 

  257. Ovadyahu D, Eshel D, Priel Z (1988) Intensification of ciliary motility by extracellular ATP. Biorheology 25:489–501

    PubMed  CAS  Google Scholar 

  258. Verdugo P (1980) Ca2+-dependent hormonal stimulation of ciliary activity. Nature 283:764–765

    PubMed  CAS  Google Scholar 

  259. Girard PR, Kennedy JR (1986) Calcium regulation of ciliary activity in rabbit tracheal epithelial explants and outgrowth. Eur J Cell Biol 40:203–209

    PubMed  CAS  Google Scholar 

  260. Di Benedetto G, Magnus CJ, Gray PT, Mehta A (1991) Calcium regulation of ciliary beat frequency in human respiratory epithelium in vitro. J Physiol 439:103–113

    PubMed  Google Scholar 

  261. Salathe M, Bookman RJ (1999) Mode of Ca2+ action on ciliary beat frequency in single ovine airway epithelial cells. J Physiol 520:851–865

    PubMed  CAS  Google Scholar 

  262. Evans JH, Sanderson MJ (1999) Intracellular calcium oscillations regulate ciliary beat frequency of airway epithelial cells. Cell Calcium 26:103–110

    PubMed  CAS  Google Scholar 

  263. Korngreen A, Priel Z (1996) Purinergic stimulation of rabbit ciliated airway epithelia: control by multiple calcium sources. J Physiol 497:53–66

    PubMed  CAS  Google Scholar 

  264. Salathe M (2007) Regulation of mammalian ciliary beating. Annu Rev Physiol 69:401–422

    PubMed  CAS  Google Scholar 

  265. Charest R, Blackmore PF, Exton JH (1985) Characterization of responses of isolated rat hepatocytes to ATP and ADP. J Biol Chem 260:15789–15794

    PubMed  CAS  Google Scholar 

  266. Uzlaner N, Priel Z (1999) Interplay between the NO pathway and elevated [Ca2+]i enhances ciliary activity in rabbit trachea. J Physiol 516:179–190

    PubMed  CAS  Google Scholar 

  267. Korngreen A, Ma W, Priel Z, Silberberg SD (1998) Extracellular ATP directly gates a cation-selective channel in rabbit airway ciliated epithelial cells. J Physiol 508:703–720

    PubMed  CAS  Google Scholar 

  268. Taira M, Tamaoki J, Nishimura K, Nakata J, Kondo M, Takemura H, Nagai A (2002) Adenosine A(3) receptor-mediated potentiation of mucociliary transport and epithelial ciliary motility. Am J Physiol 282:L556–L562

    CAS  Google Scholar 

  269. Hayashi T, Kawakami M, Sasaki S, Katsumata T, Mori H, Yoshida H, Nakahari T (2005) ATP regulation of ciliary beat frequency in rat tracheal and distal airway epithelium. Exp Physiol 90:535–544

    PubMed  CAS  Google Scholar 

  270. Delmotte P, Sanderson MJ (2006) Ciliary beat frequency is maintained at a maximal rate in the small airways of mouse lung slices. Am J Respir Cell Mol Biol 35:110–117

    PubMed  CAS  Google Scholar 

  271. Lieb T, Frei CW, Frohock JI, Bookman RJ, Salathe M (2002) Prolonged increase in ciliary beat frequency after short-term purinergic stimulation in human airway epithelial cells. J Physiol 538:633–646

    PubMed  CAS  Google Scholar 

  272. Nlend MC, Schmid A, Sutto Z, Ransford GA, Conner GE, Fregien N, Salathe M (2007) Calcium-mediated, purinergic stimulation and polarized localization of calcium-sensitive adenylyl cyclase isoforms in human airway epithelia. FEBS Lett 581:3241–3246

    PubMed  CAS  Google Scholar 

  273. Di Benedetto G, Manara-Shediac FS, Mehta A (1991) Effect of cyclic AMP on ciliary activity of human respiratory epithelium. Eur Respir J 4:789–795

    PubMed  Google Scholar 

  274. Salathe M, Pratt MM, Wanner A (1993) Cyclic AMP-dependent phosphorylation of a 26 kD axonemal protein in ovine cilia isolated from small tissue pieces. Am J Respir Cell Mol Biol 9:306–314

    PubMed  CAS  Google Scholar 

  275. Wyatt TA, Spurzem JR, May K, Sisson JH (1998) Regulation of ciliary beat frequency by both PKA and PKG in bovine airway epithelial cells. Am J Physiol 275:L827–L835

    PubMed  CAS  Google Scholar 

  276. Schmid A, Bai G, Schmid N, Zaccolo M, Ostrowski LE, Conner GE, Fregien N, Salathe M (2006) Real-time analysis of cAMP-mediated regulation of ciliary motility in single primary human airway epithelial cells. J Cell Sci 119:4176–4186

    PubMed  CAS  Google Scholar 

  277. Cooper DM, Karpen JW, Fagan KA, Mons NE (1998) Ca2+-sensitive adenylyl cyclases. Adv Second Messenger Phosphoprotein Res 32:23–51

    PubMed  CAS  Google Scholar 

  278. Webb JG, Yates PW, Yang Q, Mukhin YV, Lanier SM (2001) Adenylyl cyclase isoforms and signal integration in models of vascular smooth muscle cells. Am J Physiol 281:H1545–H1552

    CAS  Google Scholar 

  279. Regnauld KL, Leteurtre E, Gutkind SJ, Gespach CP, Emami S (2002) Activation of adenylyl cyclases, regulation of insulin status, and cell survival by G(alpha)olf in pancreatic beta-cells. Am J Physiol 282:R870–R880

    CAS  Google Scholar 

  280. Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628

    PubMed  CAS  Google Scholar 

  281. Steegborn C, Litvin TN, Levin LR, Buck J, Wu H (2005) Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment. Nat Struct Mol Biol 12:32–37

    PubMed  CAS  Google Scholar 

  282. Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR (2003) Kinetic properties of “soluble” adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem 278:15922–15926

    PubMed  CAS  Google Scholar 

  283. Schmid A, Sutto Z, Nlend MC, Horvath G, Schmid N, Buck J, Levin LR, Conner GE, Fregien N, Salathe M (2007) Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP. J Gen Physiol 130:99–109

    PubMed  CAS  Google Scholar 

  284. Haggie PM, Verkman AS (2009) Defective organellar acidification as a cause of cystic fibrosis lung disease: reexamination of a recurring hypothesis. Am J Physiol 296:L859–L867

    CAS  Google Scholar 

  285. Schmid A, Sutto Z, Schmid N, Novak L, Ivonnet P, Horvath G, Conner G, Fregien N, Salathe M (2010) Decreased soluble adenylyl cyclase activity in cystic fibrosis is related to defective apical bicarbonate exchange and affects ciliary beat frequency regulation. J Biol Chem 285:29998–30007

    PubMed  CAS  Google Scholar 

  286. Farrell PM, Rosenstein BJ, White TB, Accurso FJ, Castellani C, Cutting GR, Durie PR, LeGrys VA, Massie J, Parad PB, Rock MJ, Campbell PW (2008) Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation consensus report. J Pediatr 153:S4–S14

    PubMed  Google Scholar 

  287. Boucher RC (2007) Evidence for airway surface dehydration as the initiating event in CF airway disease. J Intern Med 261:5–16

    PubMed  CAS  Google Scholar 

  288. Berdiev BK, Qadri YJ, Benos DJ (2009) Assessment of the CFTR and ENaC association. Mol Biosyst 5:123–127

    PubMed  CAS  Google Scholar 

  289. Suaud L, Yan W, Carattino MD, Robay A, Kleyman TR, Rubenstein RC (2007) Regulatory interactions of N1303K-CFTR and ENaC in Xenopus oocytes: evidence that chloride transport is not necessary for inhibition of ENaC. Am J Physiol 292:C1553–C1561

    CAS  Google Scholar 

  290. Gentzsch M, Dang H, Dang Y, Garcia-Caballero A, Suchindran H, Boucher RC, Stutts MJ (2010) The cystic fibrosis transmembrane conductance regulator impedes proteolytic stimulation of the epithelial Na+ channel. J Biol Chem Oct 15; 285:32227–32232. Epub 2010, Aug 13

    PubMed  CAS  Google Scholar 

  291. Esther CR Jr, Alexis NE, Clas ML, Lazarowski ER, Donaldson SH, Pedrosa Ribeiro CM, Moore CG, Davis SD, Boucher RC (2008) Extracellular purines are biomarkers of neutrophilic airway inflammation. Eur Respir J 31:949–956

    PubMed  CAS  Google Scholar 

  292. Livraghi A, Randell SH (2007) Cystic fibrosis and other respiratory diseases of impaired mucus clearance. Toxicol Pathol 35:116–129

    PubMed  CAS  Google Scholar 

  293. Szilasi M, Dolinay T, Nemes Z, Strausz J (2006) Pathology of chronic obstructive pulmonary disease. Pathol Oncol Res 12:52–60

    PubMed  Google Scholar 

  294. Randell SH, Boucher RC (2006) Effective mucus clearance is essential for respiratory health. Am J Respir Cell Mol Biol 35:20–28

    PubMed  CAS  Google Scholar 

  295. Sisson JH, Papi A, Beckmann JD, Leise KL, Wisecarver J, Brodersen BW, Kelling CL, Spurzem JR, Rennard SI (1994) Smoke and viral infection cause cilia loss detectable by bronchoalveolar lavage cytology and dynein ELISA. Am J Respir Crit Care Med 149:205–213

    PubMed  CAS  Google Scholar 

  296. Cantin AM, Hanrahan JW, Bilodeau G, Ellis L, Dupuis A, Liao J, Zielenski J, Durie P (2006) Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am J Respir Crit Care Med 173:1139–1144

    PubMed  CAS  Google Scholar 

  297. Virgin FW, Azbell C, Schuster D, Sunde J, Zhang S, Sorscher EJ, Woodworth BA (2010) Exposure to cigarette smoke condensate reduces calcium activated chloride channel transport in primary sinonasal epithelial cultures. Laryngoscope 120:1465–1469

    PubMed  CAS  Google Scholar 

  298. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Paré PD (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350:2645–2653

    PubMed  CAS  Google Scholar 

  299. Kreda SM, Mall M, Mengos A, Rochelle L, Yankaskas JR, Riordan JR, Boucher RC (2005) Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol Biol Cell 16:2154–2167

    PubMed  CAS  Google Scholar 

  300. Wilkes DL, Schneiderman JE, Nguyen T, Heale L, Moola F, Ratjen F, Coates AL, Wells GD (2009) Exercise and physical activity in children with cystic fibrosis. Paediatr Respir Rev 10:105–109

    PubMed  Google Scholar 

  301. Shimura S, Andoh Y, Haraguchi M, Shirato K (1996) Continuity of airway goblet cells and intraluminal mucus in the airways of patients with bronchial asthma. Eur Respir J 9:1395–1401

    PubMed  CAS  Google Scholar 

  302. Evans CM, Koo JS (2009) Airway mucus: the good, the bad, the sticky. Pharmacol Ther 121:332–348

    PubMed  CAS  Google Scholar 

  303. McNamara N, Gallup M, Khong A, Sucher A, Maltseva I, Fahy JV, Basbaum C (2004) Adenosine up-regulation of the mucin gene, MU2, in asthma. FASEB J 18:1770–1772

    PubMed  CAS  Google Scholar 

  304. Esther CR Jr, Alexis NE, Clas ML, Lazarowski ER, Donaldson SH, Ribeiro CM, Moore CG, Davis SD, Boucher RC (2008) Extracellular purines are biomarkers of neutrophilic airway inflammation. Eur Respir J 31:949–956

    PubMed  CAS  Google Scholar 

  305. Loughlin CE, Esther CRJ, Lazarowski ER, Alexis NE, Peden DB (2010) Neutrophilic inflammation is associated with altered airway hydration in stable asthmatics. Respir Med 104:29–33

    PubMed  Google Scholar 

  306. Lommatzsch M, Cicko S, Muller T, Lucattelli M, Bratke K, Stoll P, Grimm M, Durk T, Zissel G, Ferrari D, Di Virgilio F, Sorichter S, Lungarella G, Virchow JC, Idzko M (2010) Extracellular adenosine triphosphate and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 181:928–934

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank their many colleagues in their respective laboratories whose talents contributed to much of the work described in this review. We also think Edwin Chapman, University of Wisconsin, for permission to redraw Fig. 5.4 and for valuable thoughts on the mechanism of Ca2+/Syt-mediated exocytic fusion. The studies were supported in part by Grant 0120579 to PV from the Biocomplexity Program of the National Science Foundation, Grant HL-063756 to CWD from the National Institutes of Health, and grants to CWD from the North American Cystic Fibrosis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tarran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schmid, A. et al. (2011). Nucleotide-Mediated Airway Clearance. In: Picher, M., Boucher, R. (eds) Purinergic Regulation of Respiratory Diseases. Subcellular Biochemistry, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1217-1_5

Download citation

Publish with us

Policies and ethics