Skip to main content

Management of Subterranean Fauna in Karst

  • Chapter
  • First Online:

Abstract

Ensuring the appropriate quantity and quality of energy flow from the surface to the subterranean environment is a universal challenge of managing subterranean fauna in karst. This chapter covers four major issues central to an understanding of the energy connections between the surface and the subsurface ecosystems. The first issue is that there needs to be a greater focus on species that are not restricted to subterranean habitats because some of these species act as major vectors of energy into subsurface ecosystems. The second issue is that a greater understanding of the paths of allochthonous energy into the subterranean ecosystem is necessary to ensure the long-term health of the subterranean fauna. Percolating water delivered from the epikarst appears to be more important than organic matter transported by sinking streams in supporting the biofilm that serves as the base of the aquatic food web. Energy transported by active movement of organisms from the surface is essential in supporting the terrestrial food web and possibly some aquatic species as well. The importance of many potential sources of energy, such as the organic matter left on the riparian zones of subterranean streams, has not been studied. The third issue is that management practices need to focus on factors that threaten the energy flow from the surface to the subsurface because, unlike many other threats to subterranean ecosystems, disruptions of such paths of energy are usually not overt and easily recognizable. The fourth issue is that the metabolic adaptation of many subterranean species to the underground environment may increase their resilience to disruptions of energy flow from the surface. Thus, management practices that recognize threats to such energy paths may allow for a higher probability of successful interventions leading to restoration of the health of subterranean ecosystems.

“When we try to pick out anything by itself, we find it hitched to everything else in the universe” – John Muir

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Accordi F, Sbordoni V (1978) The fine structure of Hamann’s organ in Leptodirus hohenwarti, a highly specialized cave Bathysciinae (Coleoptera, Catopidae). Int J Speleol 9:153–165

    Google Scholar 

  • Aley T (2004) Tourist cave algae and lampenflora. In: Gunn J (ed) Encyclopedia of cave and karst science. Fitzroy Dearborn, New York, pp 733–734

    Google Scholar 

  • Aley T (2010) Management strategies for responding to white-nose syndrome in bats. Nat Speleological Soc News 58:10–14

    Google Scholar 

  • Allen JD, Castillo MM (2007) Stream ecology: structure and function of running waters. Springer, New York

    Google Scholar 

  • Ashmole NP, Ashmole MJ (2000) Fallout of dispersing arthropods supporting invertebrates in barren volcanic habitats. In: Wilkens H, Culver DC, Humphreys WF (eds.) Subterranean ecosystems. Elsevier, Amsterdam, pp 269–286

    Google Scholar 

  • Barbour RW, Davis WH (1969) Bats of America. University of Kentucky Press, Lexington

    Google Scholar 

  • Barr TC Jr, Holsinger JR (1985) Speciation in cave faunas. Ann Rev Ecol Syst 16:313–337

    Article  Google Scholar 

  • Blehert DS, Hicks AC, Behr M et al (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323:227

    Article  Google Scholar 

  • Boston P (2004) Biofilms. In: Gunn J (ed.) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 145–147

    Google Scholar 

  • Christiansen KA (1962) Proposition pour la classification des animaux cavernicoles. Spelunca 2:75–78

    Google Scholar 

  • Christman MC, Culver DC, Madden MK et al (2005) Patterns of endemism of the eastern North American cave fauna. J Biogeogr 32:1442–1452

    Article  Google Scholar 

  • Clements R, Sodhi NS, Shilthuizen M et al (2006) Limestone karsts of southeast Asia: imperiled arks of biodiversity. Bioscience 56:733–742

    Article  Google Scholar 

  • Collins TL, Holsinger JR (1981) Population ecology of the troglobitic isopod crustacean Antrolana lira Bowman (Cirolanidae). In: Proceeding of the XVIIIth International Congress of Speleology, Bowling Green, pp 129–132

    Google Scholar 

  • Culver DC (1982) Cave Life. Harvard Univ. Press, Cambridge, Mass., pp 189

    Google Scholar 

  • Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, Oxford

    Google Scholar 

  • Culver DC, Wilkens H (2000) Critical review of the relevant theories of the evolution of subterranean animals. In: Wilkens H, Culver DC, Humphreys WF (eds.) Subterranean ecosystems. Elsevier, Amsterdam, pp 381–398

    Google Scholar 

  • Culver DC, Jones WK, Holsinger JR (1992) Biological and hydrological investigation of the Cedars, Lee County, Virginia, an ecologically significant and threatened karst area. In: Stanford JA, Simons JJ (eds.) Proceedings of the first international conference on groundwater ecology. American Water Resources Association, Bethesda, pp 281–290

    Google Scholar 

  • Culver DC, Kane TC, Fong DW (1995) Adaptation and natural selection in caves: the evolution of Gammarus minus. Harvard University Press, Cambridge

    Google Scholar 

  • Culver DC, Masters LL, Christman MC, Hobbs HH III (2000) Obligate cave fauna of the 48 contiguous United States. Cons Biol 14:386–401

    Article  Google Scholar 

  • Dasher GR (2001) The caves and karst of Pendleton County, West Virginia. West Virginia Speleological Survey Bulletin 15, Barrackville

    Google Scholar 

  • Deharveng L, Bedos A (2000) The cave fauna of southeast Asia. Origin, evolution and ecology. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Elsevier, pp. 603–632

    Google Scholar 

  • Elliott WR (2000) Conservation of the North American cave and karst biota. In: Wilkens H, Culver DC, Humphreys WF (eds.) Subterranean ecosystems. Elsevier, Amsterdam, pp 665–689

    Google Scholar 

  • Engel AS (2007) Observations on the biodiversity of sulfidic karst habitats. J Cave Karst Stud 69:187–206

    Google Scholar 

  • Fenolio DB, Graening GO (2009) Report of a mass aggregation of isopods in an Ozark cave of Oklahoma with considerations of population sizes of stygobionts. Speleobiology Notes 1:9–11

    Google Scholar 

  • Fong DW (2003) Intermittent pools at headwaters of subterranean drainage basins as sampling sites for epikarstic fauna. In: Jones WK, Culver DC, Herman JS (eds.) Epikarst. Proceedings of the symposium held October 1 through 4, 2003, Shepherdstown, West Virginia, USA. Karst Waters Institute Special Publications 9, Charles Town, pp. 114–118

    Google Scholar 

  • Fong DW, Culver DC (1994) Fine-scale biogeographic differences in the crustacean fauna of a cave system in West Virginia, USA. Hydrobiologia 287:29–37

    Article  Google Scholar 

  • Fong DW, Culver DC, Kane TC (1995) Vestigialization and loss of nonfunctional characters. Ann Rev Ecol Syst 26:249–268

    Article  Google Scholar 

  • Fong DW, Culver DC, III Hobbs HH et al (2007) The invertebrate cave fauna of West Virginia, 2nd edn. West Virginia Speleological Survey Bulletin 16, Barrackville

    Google Scholar 

  • Gargas A, Trest MT, Christensen M et al (2009) Geomysces destructans sp Nov. associated with bat white-nose syndrome. Mycotaxon 108:147–154

    Article  Google Scholar 

  • Gibert J, Culver DC (2009) (eds.) Special issue: assessing and conserving groundwater biodiversity. Freshw Biol 54:4

    Google Scholar 

  • Graening GO, Brown AV (2003) Ecosystem dynamics and pollution effects in an Ozark cave stream. J Am Water Resour Assoc 39:1497–1505

    Article  Google Scholar 

  • Griffith DM, Poulson TL (1993) Mechanisms and consequences of intraspecific competition in a carabid cave beetle. Ecology 24:1373–1383

    Article  Google Scholar 

  • Gunn J, Hardwick P, Wood PJ (2000) The invertebrate community of the Peak-Speedwell Cave System – pressures and considerations for conservation management. Aquat Conserv Mar Freshw Ecosyst 10:353–369

    Article  Google Scholar 

  • Hahn HJ (2009) A proposal for an extended typology of groundwater habitats. Hydrogeol J 17:77–81

    Google Scholar 

  • Hamilton-Smith E, Eberhard S (2000) Conservation of cave communities in Australia. In: Wilkens H, Culver DC, Humphreys WF (eds.) Subterranean ecosystems. Elsevier, Amsterdam, pp 647–664

    Google Scholar 

  • Hancock PJ, Boulton AJ (2008) Stygofauna biodiversity and endemism in four alluvial aquifers in eastern Australia. Invert Syst 22:117–126

    Article  Google Scholar 

  • Hoch H, Oromi P, Arechavaleta M (1999) Nisia subfogo sp. N., a new cave dwelling planthopper from the Cape Verde Islands (Hemiptera: Fulgoromorpha: Meenoplidae). Rev Acad Canaria Cienc 11:189–199

    Google Scholar 

  • Holsinger JR, Hubbard DA Jr, Bowman TE (1994) Biogeographic and ecological implications of newly discovered populations of the stygobiont isopod crustacean Antrolana lira Bowman (Cirolanidae). J Nat Hist 28:1047–1058

    Article  Google Scholar 

  • Hoslinger JR (2005) Vicariance and dispersalist biogeography. In: Culver DC, White WB (eds.) Encyclopedia of caves. Elsevier, Burlington, pp 591–599

    Google Scholar 

  • Howarth FG (1972) Cavernicoles in lava tubes on the island of Hawaii. Science 175:325–326

    Article  Google Scholar 

  • Howarth FG (1980) The zoogeography of specialized cave animals: a bioclimatic model. Evolution 34:394–406

    Article  Google Scholar 

  • Howarth FG (1983) Ecology of cave arthropods. Ann Rev Entomol 28:365–389

    Article  Google Scholar 

  • Humphreys WF (2000) Relict fauna and their derivation. In: Wilkens H, Culver DC, Humphreys WF (eds.) Subterranean ecosystems. Elsevier, Amsterdam, pp 417–432

    Google Scholar 

  • Humphreys WF (2004) Cape range, Australia: biospeleology. In: Gunn J (ed.) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 181–183

    Google Scholar 

  • Humphreys WF (2009) Hydrogeology and groundwater ecology: does each inform the other? Hydrogeol J 17:5–21

    Google Scholar 

  • Huppop K (2000) How do cave animals cope with the food scarcity in caves? In: Wilkens H, Culver DC, Humphreys WF (eds.) Subterranean ecosystems. Elsevier, Amsterdam, pp 159–188

    Google Scholar 

  • Hutchins B, Orndorff W (2009) Effectiveness and adequacy of well sampling using baited traps for monitoring the distribution and abundance of an aquatic subterranean isopod. J Cave Karst Stud 71:193–203

    Article  Google Scholar 

  • Hutchins B, Fong DW, Carlini DB (2010) Genetic population structure of the Madison Cave Isopod, Antrolana lira (Cymothoida: Cirolanidae) in the Shenandoah Valley of the eastern United States. J Crustacean Biol 30:312–322

    Article  Google Scholar 

  • Jasinska EJ, Knott B (2000) Root-driven faunas in cave waters. In: Wilkens H, Culver DC, Humphreys WF (eds.) Subterranean ecosystems. Elsevier, Amsterdam, pp 287–307

    Google Scholar 

  • Jasinska EJ, Knott B, McComb AJ (1996) Root mats in groundwater: a fauna-rich cave habitat. J N Am Benthol Soc 15:508–519

    Article  Google Scholar 

  • Jones WK, III Hobbs HH, Wicks CM et al (2003) Recommendations and guidelines for managing caves on protected lands. Karst Waters Institute Special Publication 8. KWI, Charles Town

    Google Scholar 

  • Kane TC, Poulson TL (1976) Foraging by cave beetles: spatial and temporal heterogeneity of prey. Ecology 57:793–800

    Article  Google Scholar 

  • Kane TC, Norton RM, Poulson TL (1975) The ecology of a predaceous troglobitic beetle, Neaphaenops tellkampfi (Coleoptera: Carabidae: Trechinae) I. Seasonality of food input and early life history stage. Int J Speleol 7:45–54

    Google Scholar 

  • Knapp SM, Fong DW (1999) Estimates of population size of Stygobromus emarginatus (Amphipoda: Crangonyctidae) in a headwater stream in Organ Cave, West Virginia. J Cave Karst Stud 61:3–6

    Google Scholar 

  • Lavoie KH, Helf KL, Poulson TL (2007) The biology and ecology of North American cave crickets. J Cave Karst Stud 69:114–134

    Google Scholar 

  • Marsh TG (1968) Ecological and behavioral studies of the cave beetle, Darlingtonea kentuckensis. Ph.D. dissertation, University of Kentucky, Lexington

    Google Scholar 

  • McGregor SW, O’Neil PE, Rheams KF, Moser PH, Blackwood R (1997) Biological, geological and hydrological investigations in Bobcat, Matthews, and Shelta caves and other selected caves in north Alabama. Environ Geol Division Bull 166:1–198

    Google Scholar 

  • Mitchell RW (1968) Food and feeding habits of the troglobitic carabid beetle, Rhadine subterranean. Int J Speleol 3:249–270

    Google Scholar 

  • Oromi P, Martin JL (1992) The Canary Islands subterranean fauna: characterization and composition. In: Camacho AI (ed) The natural history of biospeleology. Museo Nacional de Ciencias Naturales, Madrid, pp 529–567

    Google Scholar 

  • Pasquarell GC, Boyer DB (1993) Water quality impacts of agriculture on karst conduit waters, Greenbrier County, WV. In: Foster DL (ed.) National Cave Management Proceedings, Bowling Green, Kentucky, 23–26 Oct 1991. American Cave Conservation Association, Horse Cave, pp. 72–78

    Google Scholar 

  • Peck SB (1977) An unusual sense receptor in internal vesicles of Ptomaphagus (Coleoptera: Leiodidae). Can Entomol 109:81–86

    Article  Google Scholar 

  • Pipan T (2005) Epikarst – a promising habitat. Zalozba ZRC, Ljubljana

    Google Scholar 

  • Pipan T, Culver DC (2005) Estimating biodiversity in the epikarst zone of a West Virginia cave. J Cave Karst Stud 67:103–109

    Google Scholar 

  • Poulson TL (1992) The Mammoth Cave ecosystem. In Camacho A (ed.) The natural history of biospeleology. Museo Nacional de Ciencias Nataurales. Madrid, pp 569–611

    Google Scholar 

  • Poulson TL (2005) Food sources. In: Culver DC, White WB (eds.) Encyclopedia of caves. Elsevier, Amsterdam, pp 255–264

    Google Scholar 

  • Romero A (2009) Cave biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sarbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based groundwater ecosystem. Science 272:1953–1955

    Article  Google Scholar 

  • Sarbu SM, Galdenzi S, Menichetti M et al (2000) Geology and biology of the Frasassi Caves in central Italy: an ecological and multidisciplinary study of a hypogenic underground karst system. In: Wilkens H, Culver DC, Humphreys WF (eds.) Subterranean ecosystems. Elsevier, Amsterdam, pp 359–378

    Google Scholar 

  • Simon KS, Benfield EF (2001) Leaf and wood breakdown in cave streams. J N Am Benthol Soc 20:550–563

    Article  Google Scholar 

  • Simon KS, Benfield EF (2002) Ammonium retention and whole stream metabolism in cave streams. Hydrobiologia 582:31–39

    Article  Google Scholar 

  • Simon KS, Benfield EF, Macko SA (2003) Food web structure and the role of epilithic films in cave streams. Ecology 84:2395–2406

    Article  Google Scholar 

  • Simon KS, Pipan T, Culver DC (2007) A conceptual model of the flow and distribution of organic carbon in caves. J Cave Karst Stud 69:279–284

    Google Scholar 

  • Sket B (1999) The nature of biodiversity in subterranean waters and how it is endangered. Biodivers Conserv 8:1319–1338

    Article  Google Scholar 

  • Sket B (2008) Can we agree on an ecological classification of subterranean animals? J Nat Hist 42:1549–1563

    Article  Google Scholar 

  • Stone FD, Howarth FG, Hoch H, Ashe M (2005) Root communities in lava tubes. In: Culver DC, White WB (eds.) Encyclopedia of caves. Elsevier, Amsterdam, pp 477–484

    Google Scholar 

  • Studier EH (1996) Composition of bodies of cave crickets (Hadenoecus subterraneus), their eggs, and their egg predator, Neaphaenops tellkampfi. Amer Midl Nat 136:101–109

    Article  Google Scholar 

  • Sweet SS (1986) Caudata. In: Botosaneanu L (ed.) Stygofauna mundi: a faunistic, distributional, and ecological synthesis of the world fauna inhabiting subterranean waters (including the marine interstitial). E.J. Brill, Leiden, pp 734–740

    Google Scholar 

  • Taylor SJ, Krejca J, Denight ML (2005) Foraging and range habitat use of Ceuthophilus secretus (Orthoptera Rhaphidophoridae), a key trogloxene in central Texas cave communities. Am Midl Nat 154:97–114

    Article  Google Scholar 

  • Tercafs R (2001) The protection of the subterranean environment. Conservation principles and management tools. P.S. Publishers, Luxembourg

    Google Scholar 

  • Turquin MJ, Barthelemy D (1985) The dynamics of a population of the troglobitic amphipod Niphargus virei Chevreux. Stygologia 1:109–117

    Google Scholar 

  • Veni G (1988) The caves of Bexar County. Speleological monographs 2. Texas Memorial Museum. University of Texas at Austin

    Google Scholar 

  • Verovnik R, Sket B, Trontelj P (2004) Phylogeography of subterranean and surface populations of water lice Asellus aquaticus (Crustacea: Isopoda). Mol Ecol 13:1519–1532

    Article  Google Scholar 

  • Williams PW (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol 37:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Fong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fong, D.W. (2011). Management of Subterranean Fauna in Karst. In: van Beynen, P. (eds) Karst Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1207-2_9

Download citation

Publish with us

Policies and ethics