Skip to main content

Human Disturbance of Karst Environments

  • Chapter
  • First Online:
Karst Management

Abstract

Karst environments have been impacted by human activity for thousands of years, ever since people started living in caves for shelter, needing building supplies and water. As human population has increased, so has its disturbance of the karst landscape. Quarrying, pollution, groundwater extraction, construction, and agriculture are the major culprits for disturbing both surface and subsurface karst. Ecosystems in this type of environment have been shown to be quite vulnerable to human activities. Methods to quantify this disturbance, such as the karst disturbance index, have been created to help resource managers formulate approaches to reduce this anthropogenic impact. In addition, models to measure karst vulnerability, in particular karst aquifers, have grown in number over the last two decades. When measuring human disturbance, it is important to consider matters of time and scale, as both will influence how and what data is collected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aller L, Bennet T, Lehr JH et al (1985) DRASTIC: a standardized system for evaluation of groundwater pollution potential using hydrogeologic settings. US EPA EPA/600/2-85/018, 63 p

    Google Scholar 

  • Arfib B, de Marsily G, Ganoulis J (2000) Pollution by seawater intrusion into a karst system: new research in the case of the Almyros source. Acta Carsol 29:15–31

    Google Scholar 

  • Arthur JD, Wood AR, Baker AE et al (2007) Development and implementation of a Bayesian-based aquifer vulnerability assessment in Florida. Nat Resour Res 16(2):93–107

    Article  Google Scholar 

  • Baker A, Genty D (1998) Environmental pressures on conserving cave speleothems: effects of changing surface land use and increased cave tourism. J Environ Manag 58:165–176

    Article  Google Scholar 

  • Boulton AJ, Humphreys WF, Eberhard SM (2003) Imperiled subsurface waters in Australia: biodiversity, threatening processes and conservation. Aquat Ecosyst Health Manag 6:41–54

    Article  Google Scholar 

  • Business Wire (2005) Diverse coalition demands cleanup of honeywell toxic waste site; corporate giant ripped for “dangerous pattern of dodging responsibility and delaying cleanups”’. Business Wire, 13 Dec 2005

    Google Scholar 

  • Calò F, Parise M (2006) Evaluating the human disturbance to karst environments in southern Italy. Acta Carsol 35(2):47–56

    Google Scholar 

  • Clarke A (1999) Surface disturbance threats to karst faunas in Tasmania, Australia. In: Proceedings of the 1999 National Cave and Karst Management Symposium, Southeastern Cave Conservancy, Chattanooga, pp 23–47

    Google Scholar 

  • COST-Action 65 (1995) Karst groundwater protection. Final report, European Commission Report EUR 16547 EN, Brussels-Luxemborg

    Google Scholar 

  • Craven SA (1999) Speleothem deterioration at Cango Cave, South Africa. Cave Karst Sci 26(1):29–34

    Google Scholar 

  • Crawford NC (1984) Sinkhole flooding associated with urban development upon karst terrain Bowling Green, Kentucky. In: Beck BF (ed.) Sinkholes: their geology, engineering and environmental impact. Multidisciplinary Conference on Sinkholes, Orlando, pp 283–292

    Google Scholar 

  • Day M (1996) Conservation of karst in Belize. J Cave Karst Stud 58(2):139–144

    Google Scholar 

  • Day M, Urich P (2000) An assessment of protected karst landscapes in Southeast Asia. Cave Karst Sci 27(2):61–70

    Google Scholar 

  • De Waele J (2009) Evaluating disturbance on mediterranean karst areas: the example of Sardinia (Italy). Environ Geol 58(2):239–255

    Article  Google Scholar 

  • De Waele J, Follesa R (2004) Human impact on karst: the example of Lusaka (Zambia). Int J Speleol 32(1/4):71–83

    Google Scholar 

  • Doerfliger N, Jeannin PY, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK). Environ Geol 39(2):165–176

    Article  Google Scholar 

  • Donahue B (1990) In beauty it is finished, Buzzworm. Environ J 2:34–39

    Google Scholar 

  • Drew D (1996) Agriculturally induced environmental changes in the Burren karst, Western Ireland. Environ Geol 28:137–144

    Article  Google Scholar 

  • Ebert U, Welsch H (2004) Meaningful environmental indices: a social choice approach. J Environ Econ Manag 47:270–283

    Article  Google Scholar 

  • Esty DC, Levy MA, Srebotnjak T et al (2005) Environmental sustainability index: benchmarking national environmental stewardship. Yale Center for Environmental Law and Policy, New Haven

    Google Scholar 

  • Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Unwin Hyman, Winchester

    Google Scholar 

  • Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester

    Google Scholar 

  • Foster S (1987) Fundamental concepts in aquifer vulnerability, pollution risk, and protection strategy. In: van Duijvenbooden W, Van Waegenungh HG (eds.) Vulnerability of soil and groundwater to pollutants, Proc Inf TNO Commun Hydrol Res, The Hague, pp 38

    Google Scholar 

  • Gillieson DG (1996) Caves: processes, development and management. Blackwell, Oxford

    Google Scholar 

  • Goldie HS (1993) The legal protection of limestone pavements in Great Britain. Environ Geol 28:160–166

    Article  Google Scholar 

  • Goldscheider N, Klute M, Strum S et al (2000) The PI method – a GIS based approach to mapping groundwater vulnerability with special consideration on karst aquifers. Z Anget Geol 46(3):157–166

    Google Scholar 

  • Gunn J, Bailey D (1993) Limestone quarrying and quarry reclamation in Britain. Environ Geol 21:167–172

    Article  Google Scholar 

  • Gunn J, Hardwick P (1996) The conservation of Britain’s limestone cave resource. Environ Geol 28(3):121–127

    Article  Google Scholar 

  • Gunn J, Hardwick P, Wood PJ (2000) Aquatic conservation. Mar Freshw Ecosyst 10:353–369

    Article  Google Scholar 

  • Guo Q, Wang Y, Gao X et al (2007) A new model (DRARCH) for assessing groundwater vulnerability to arsenic contamination at basin scale: a case study in Taiyuan basin, northern China. Environ Geol 52:923–932

    Article  Google Scholar 

  • Harding KA, Ford DC (1993) Impact of primary deforestation upon limestone slopes in northern Vancouver Island, British Columbia. Environ Geol 3:137–143

    Article  Google Scholar 

  • Huppert GN (1995) Legal protection for caves in the United States. Environ Geol 26(2):121–123

    Google Scholar 

  • Huppert G, Burri E, Forti P et al (1993) Effects of tourist development on caves and karst. Catena Suppl 25:251–268

    Google Scholar 

  • James JM (1993) Burial and infilling of a karst in Papua New Guinea by road erosion sediment. Environ Geol 21:114–151

    Article  Google Scholar 

  • Keith JH, Bassestt JL, Duwelius JA (1997) Findings from MOU-related karst studies for Indiana State Road 37, Lawrence County, Indiana. In: Stephenson BF (ed.) The engineering geology and hydrogeology of karst terrains. Proccedings of the 6th Annual Multidisciplinary Conference Sinkholes and the Engineering and Environmental Impacts, Springfield, Missouri, p 157–171

    Google Scholar 

  • Kueny JA, Day M (1998) An assessment of protected karst landscapes in the Caribbean. Caribb Geogr 9(2):87–100

    Google Scholar 

  • Kueny JA, Day M (2002) Designation of protected karstlands in Central America: a regional assessment. J Cave Karst Stud 64(3):165–174

    Google Scholar 

  • Lavoie K, Northup DE (2005) Bacteria as indicators of human impact in caves. In: Proceedings of the 2005 National Cave and Karst Management Symposium, pp 119–124

    Google Scholar 

  • Leibundgut C (1998) Vulnerability of Karst Aquifers. In: Leibundgut C, Gunn J, Dassargues A (eds.) Karst Hydrology. Proceedings of Workshop W2 held in Rabat, Morocco, 1997. IAHS, no. 247, pp 45–61

    Google Scholar 

  • Loop CM, White WB (2001) A conceptual model for DNAPL transport in karst ground water basins. Groundwater 39:119–127

    Google Scholar 

  • Micketti G (2004) Limestone: the lifeline of Rogers city. Micketti, Acme

    Google Scholar 

  • Nguyet V, Goldscheider N (2006) A simplified methodology for mapping groundwater vulnerability and contamination risk, and its first application in a tropical karst area, Vietnam. Hydrogeol J 14(8):1666–1675

    Article  Google Scholar 

  • North L, van Beynen P, Parise M (2009) Interregional comparison of karst disturbance: West-Central Florida and Southeast Italy. J Environ Manag 90:1770–1781

    Article  Google Scholar 

  • Parise M, Valdes Suarez M (2005) The show cave at Gran Caverna De Santo Tomas (Provinca Pinar Del Rio, Cuba). Acta Carsol 34(1):135–149

    Google Scholar 

  • Parise M, Qiriazi P, Sala S (2004) Natural and anthropogenic hazards in karst areas of Albania. Nat Hazard Earth Syst Sci 4:569–581

    Article  Google Scholar 

  • Pugsley C (1984) Ecology of the New Zealand glowworm, Arachnocampa luminosa (diptera: Keroplatidae), in the Glowworm Cave, Waitomo. J R Soc N Z 14:387–407

    Google Scholar 

  • Quinlan JF, Ewers RO (1985) Groundwater flow in limestone terranes: strategy, rationale and procedure for reliable, efficient monitoring of groundwater quality in karst areas. In: National symposium and exposition on aquifer restoration and groundwater monitoring, Proceedings of the National Water Well Association, Worthington, Ohio, p 197–234

    Google Scholar 

  • Ravbar N, Goldscheider N (2009) Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeol J 17(3):725–733

    Article  Google Scholar 

  • Roth J (1993) Preserving biodiversity in caves. Wild Earth 3(3):32–33

    Google Scholar 

  • Sauro U (1993) Human impact on the karst of the Venetian Fore-Alps, Italy. Environ Geol 21:115–121

    Article  Google Scholar 

  • Silverwood N (2000) The complex of Mega Mania. For Bird 297:14–18

    Google Scholar 

  • Sinclair WC, Stewart JW, Knutilla RL et al (1985) Types, Features, and Occurrence of Sinkholes in the Karst of West-Central Florida. United States Geological Survey, water-resources investigations report 85–4126, 81

    Google Scholar 

  • Tihansky AB (1999) Sinkholes: West-Central Florida. In: Galloway D, Jones DR, Ingebritsen SE (eds.) Land Subsidence in the United States. United States Geological Survey Circular 1182, 177 pp

    Google Scholar 

  • Urich PB (1993) Stress on tropical karst cultivated with wet rice: Bohol, Philippines. Environ Geol 21:129–136

    Article  Google Scholar 

  • Urich PB (2002) Land use in karst terrain: review of impacts of primary activities on temperate karst ecosystems. Science for Conservation monograph series 198. Department of Conservation, Wellington

    Google Scholar 

  • Urich PB, Day M, Lynagh F (2001) Policy and practice in karst landscape protection: Bohol, the Philippines. Geogr J 167(4):305–323

    Article  Google Scholar 

  • van Beynen PE, Townsend KM (2005) A disturbance index for karst environments. Environ Manag 36:101–116

    Article  Google Scholar 

  • van Beynen PE, Feliciano N, North L et al (2007) Application of a karst disturbance index in Hillsborough County, Florida. Environ Manag 39(2):261–277

    Article  Google Scholar 

  • van Stempvoort D, Ewert L, Wassenaar L (1993) Aquifer vulnerability index (AVI): a GIS compatible method for groundwater vulnerability mapping. Can Water Res J 18:25–37

    Article  Google Scholar 

  • Veni G (1999) A geomorphological strategy for conducting environmental impact assessments in karst areas. Geomorphology 31:151–180

    Article  Google Scholar 

  • Veni G, DuChene H, Crawford NC et al (2001) Living with karst: a fragile foundation. American Geological Institute, Alexandria

    Google Scholar 

  • Watson J, Hamilton-Smith E, Gillieson D et al (1997) Guidelines for cave and karst protection: IUCN world commission on protected areas. WCPA Working Group on Cave and Karst Protection, Cambridge

    Google Scholar 

  • White EL, Aaron G, White WB (1984) The influence of urbanization on sinkhole development in central Pennsylvania. In: Beck BF (ed.) Sinkholes: their geology, engineering, and environmental impact. Proccedings of the 1st Annual Multidisciplinary Conference Sinkholes, Orlando

    Google Scholar 

  • Whitten T (2009) Applying ecology for cave management in China and neighbouring countries. J Appl Ecol 46:520–523

    Article  Google Scholar 

  • Williams PW (1993) Environmental change and human impact on karst terrains: an introduction. In: Williams PW (ed.) Karst Terrains, environmental changes, human impact. Catena Suppl 25: 1–19

    Google Scholar 

  • Williams A (2000) Alaska resource data file; De Long Mountains Quadrangle: U.S. Geological Survey Open-File Report 00–23, 37 p

    Google Scholar 

  • Wood PJ, Gunn J, Perkins J (2002) The impact of pollution on aquatic invertebrates with a subterranean ecosystem – out of site out of mind. Arch Hydrobiol 155:223–237

    Google Scholar 

  • Wood PJ, Gunn J, Rundle SD (2008) Response of benthic cave invertebrates to organic pollution events. Aquat Conserv Mar Freshw Ecosyst 18:909–922

    Article  Google Scholar 

  • Worthington SR (1999) A comprehensive strategy for understanding flow in carbonate aquifer. In: Palmer AN, Palmer MV, Sasowsky ID (eds.) Karst modeling: special publication 5. The Karst Waters Institute, Charles Town

    Google Scholar 

  • Xie Q, Qin Y, Chen Y et al (2002) Research on the effect of sludge fertilizer on farmland and the safety of heavy metals in a Karst area. Environ Geol 41(3/4):352–357

    Google Scholar 

  • Xiong YJ, Qiu GY, Mo DK et al (2009) Rocky desertification and its causes in karst areas: a case study in Yongshun County, Hunan Province, China. Environ Geol 57:1481–1488

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip E. van Beynen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

van Beynen, P.E., van Beynen, K.M. (2011). Human Disturbance of Karst Environments. In: van Beynen, P. (eds) Karst Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1207-2_17

Download citation

Publish with us

Policies and ethics