Skip to main content

Farmed Atlantic Salmon in Nature

  • Chapter
  • First Online:
Ecology of Atlantic Salmon and Brown Trout

Part of the book series: Fish & Fisheries Series ((FIFI,volume 33))

Abstract

Farmed Atlantic salmon escape unintentionally from hatcheries and fish farm and occur both in the Atlantic and the Pacific Oceans. These fish exploit natural feeding areas in fresh water and at sea, introgress natural populations (Fleming et al. 2000; O’Reilly et al. 2006; Castillo et al. 2008), and reduce the survival of wild populations that are exposed to salmon farms (Ford and Myers 2008). Worldwide salmonid aquaculture production has grown rapidly during the last 30–40 years, from less than 200,000 tonnes in 1970 to over one million tonnes in 2000 (Tacon 2003), and the production has continued to increase to more than 1.4 million tonnes in 2007 (FAO 2010). With this increase, the number of escaped farmed salmon has also increased through regular low-level leakages and episodic events such as wreckage of rearing pens at sea because of heavy weather.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarestrup K, Jepsen N, Rasmussen G et al (2000) Prespawning migratory behaviour and spawning success of sea-ranched Atlantic salmon, Salmo salar L., in the River Gudenaa, Denmark. Fish Manage Ecol 7:387–400

    Google Scholar 

  • Abrahams MV, Sutterlin A (1999) The foraging and antipredator behaviour of growth-enhanced transgenic Atlantic salmon. Anim Behav 58:933–942

    PubMed  Google Scholar 

  • Allen MB, Bergersen EP (2002) Factors influencing the distribution of Myxobolus cerebralis, the causative agent of whirling disease, in the Cache la Poudre River, Colorado. Dis Aquat Organ 49:51–60

    PubMed  Google Scholar 

  • Anonymous (1999) Til laks åt alle kan ingen gjera? Om årsaker til nedgangen i de norske villaksbestandene og forslag til strategier og tiltak for å bedre situasjonen (Reasons for abundance declines of wild Atlantic salmon in Norway with strategies and measures to improve the situation). NOU 1999:9 (In Norwegian, English summary)

    Google Scholar 

  • Anras MLB, Lagardere JP (2004) Domestication and behaviour in fish. Prod Anim 17:211–215

    Google Scholar 

  • Araki H, Cooper B, Blouin MS (2007) Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318:100–103

    PubMed  CAS  Google Scholar 

  • Arsan EL, Atkinson SD, Hallett SL et al (2007) Expanded geographical distribution of Myxobolus cerebralis: first detections from Alaska. J Fish Dis 30:483–491

    PubMed  CAS  Google Scholar 

  • Aubin-Horth N, Letcher BH, Hoffmann HA (2005) Interaction of rearing environment and reproductive tactic on gene expression profiles in Atlantic salmon. J Hered 96:261–278

    PubMed  CAS  Google Scholar 

  • Bakke TA, Harris PD (1998) Diseases and parasites in wild Atlantic salmon (Salmo salar) populations. Can J Fish Aquat Sci 55(Suppl 1):S247–S266

    Google Scholar 

  • Bakke TA, Harris PD, Hansen H et al (2004) Comparable susceptibility of Baltic and East Atlantic salmon (Salmo salar) stocks to Gyrodactylus salaris (Monogenea). Dis Aquat Organ 58:171–177

    PubMed  CAS  Google Scholar 

  • Balon EK (2004) About the oldest domesticates among fishes. J Fish Biol 65(Suppl A):S1–S27

    Google Scholar 

  • Benfey TJ (2001) Use of sterile triploid Atlantic salmon (Salmo salar L.) for aquaculture in New Brunswick, Canada. ICES J Mar Sci 58:525–529

    Google Scholar 

  • Berejikian BA, Tezak EP, Schroder SL et al (1997) Reproductive behavioural interactions between wild and captively reared coho salmon (Oncorhynchus kisutch). ICES J Mar Sci 54:1040–1050

    Google Scholar 

  • Berland B, Margolis L (1983) The early history of “lakselus” and some nomenclatural questions relating to copepod parasites of salmon. Sarsia 68:281–288

    Google Scholar 

  • Bird AR, Croom WJ, Black BL et al (1994) Somatotropin transgenic mice have reduced jejunal transport rates. J Nutr 124:2189–2196

    PubMed  CAS  Google Scholar 

  • Birkeland K (1996) Consequences of premature return by sea trout (Salmo trutta) infested with the salmon louse (Lepeophtheirus salmonis Krøyer): migration, growth and mortality. Can J Fish Aquat Sci 53:2808–2813

    Google Scholar 

  • Birkeland K, Jakobsen PJ (1997) Salmon lice, Lepeophtheirus salmonis, infestations as a causal agent of premature return to rivers and estuaries by sea trout, Salmo trutta, juveniles. Environ Biol Fish 49:129–137

    Google Scholar 

  • Bjørn PA, Finstad B (1997) The physiological effects of salmon lice infection on sea trout post-smolts. Nord J Freshw Res 73:60–72

    Google Scholar 

  • Boxaspen K, Næss T (2000) Development of eggs and the planktonic stages of salmon lice (Lepeophtheirus salmonis) at low temperatures. Contrib Zool 69:51–55

    Google Scholar 

  • Brodeur RD, Busby MS (1998) Occurrence of an Atlantic salmon Salmo salar in the Bering Sea. Alaska Fish Res Bull 5:64–66

    Google Scholar 

  • Buchmann K, Kristensson RT (2003) Efficacy of sodium percarbonate and formaldehyde bath treatments against Gyrodactylus derjavini infestations of rainbow trout. N Am J Aquacult 65:25–27

    Google Scholar 

  • Buschmann AH, Riquelme VA, Hernández-González MC et al (2006) A review of the impacts of salmon farming on marine coastal ecosystems in the southeast Pacific. ICES J Mar Sci 63:1338–1345

    Google Scholar 

  • Butler JRA, Cunningham PD, Starr K (2005) The prevalence of escaped farmed salmon, Salmo salar L., in the River Ewe, western Scotland, with notes on their ages, weights and spawning distribution. Fish Manage Ecol 12:149–159

    Google Scholar 

  • Cable J, Harris PD, Bakke TA (2000) Population growth of Gyrodactylus salaris (Monogenea) on Norwegian and Baltic Atlantic salmon (Salmo salar) stocks. Parasitology 121:621–620

    PubMed  Google Scholar 

  • Canning EU, Curry A, Feist SW et al (1999) Tetracapsuloides bryosalmoniae n.sp. for PKX organism, the cause of PKD in salmonid fish. Bull Eur Ass Fish Pathol 19:203–206

    Google Scholar 

  • Carlin B (1969) Migration of salmon, Lectures Series. Atlantic Salmon Association Special Publication, Montreal

    Google Scholar 

  • Carr JW, Whoriskey FG (2006) The escape of juvenile farmed Atlantic salmon from hatcheries into freshwater streams in New Brunswick, Canada. ICES J Mar Sci 63:1263–1268

    Google Scholar 

  • Carr JW, Lacroix GL, Anderson JM et al (1997) Movements of non-maturing cultured Atlantic salmon (Salmo salar) in a Canadian river. ICES J Mar Sci 54:1082–1085

    Google Scholar 

  • Carr JW, Whoriskey F, O’Reilly P (2004) Efficacy of releasing captive reared broodstock into an imperilled wild Atlantic salmon population as a recovery strategy. J Fish Biol 65(Suppl A) :S38–S54

    Google Scholar 

  • Castillo AGF, Ayllon F, Moran P et al (2008) Interspecific hybridization and introgression are associated with stock transfers in salmonids. Aquaculture 278:31–36

    CAS  Google Scholar 

  • Chilcote MW (2003) Relationship between natural productivity and the frequency of wild fish in mixed spawning populations of wild and hatchery steelhead (Oncorhynchus mykiss). Can J Fish Aquat Sci 60:1057–1067

    Google Scholar 

  • Claireaux G, McKenzie DJ, Genge AG et al (2005) Linking swimming performance, cardiac pumping ability and cardiac anatomy in rainbow trout. J Exp Biol 208:1775–1784

    PubMed  Google Scholar 

  • Clifford SL, McGinnity P, Ferguson A (1998a) Genetic changes in an Atlantic salmon population resulting from escaped juvenile farm salmon. J Fish Biol 52:118–127

    Google Scholar 

  • Clifford SL, McGinnity P, Ferguson A (1998b) Genetic changes in Atlantic salmon (Salmo salar) populations of Northwest Irish rivers resulting from escapes of adult farm salmon. Can J Fish Aquat Sci 55:358–363

    Google Scholar 

  • Cook JT, McNiven MA, Richardson GF (2000) Growth rate, body composition and feed digestibility/conversion of growth-enhanced transgenic Atlantic salmon (Salmo salar). Aquaculture 188:15–32

    Google Scholar 

  • Costello MJ (2009) How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere. Proc R Soc Lond B 276:3385–3394

    Google Scholar 

  • Crozier WW (1998) Incidence of escaped farmed salmon, Salmo salar L., in commercial salmon catches and fresh water in Northern Ireland. Fish Manage Ecol 5:23–29

    Google Scholar 

  • Cutts CJ, Metcalfe NB, Taylor AC (2002) Fish may fight rather than feed in a novel environment: metabolic rate and feeding motivation in juvenile Atlantic salmon. J Fish Biol 61:1540–1548

    Google Scholar 

  • Dannewitz J, Petersson E, Dahl J et al (2004) Reproductive success of hatchery-produced and wild-born brown trout in an experimental stream. J Appl Ecol 41:355–364

    Google Scholar 

  • Darwish TL, Hutchings JA (2009) Genetic variability in reaction norms between farmed and wild backcrosses of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 66:83–90

    CAS  Google Scholar 

  • Dawson LHJ, Pike AW, Houlihan DF et al (1998) Effects of salmon lice, Lepeophtheirus salmonis, on sea trout, Salmo trutta, at different times after seawater transfer. Dis Aquat Organ 33:179–186

    PubMed  CAS  Google Scholar 

  • Devlin RH, Donaldson EM (1992) Containment of genetically altered fish with emphasis on salmonids. In: Hew C, Fletcher G (eds) Transgenic fish. World Scientific, Singapore

    Google Scholar 

  • Devlin RH, Yesaki TY, Donaldson E et al (1995a) Production of germline transgenic Pacific salmonids with dramatically increased growth-performance. Can J Fish Aquat Sci 52:1376–1384

    Google Scholar 

  • Devlin RH, Yesaki TY, Donaldson E et al (1995b) Transmission and phenotypic effects of an antifreeze/GH gene construct in coho salmon (Oncorhynchus kisutch). Aquaculture 137:161–169

    CAS  Google Scholar 

  • Devlin RH, Johnsson JI, Smailus DE et al (1999) Increased ability to compete for food by growth hormone-transgenic coho salmon Oncorhynchus kisutch (Walbaum). Aquacult Res 30:479–482

    Google Scholar 

  • Devlin RH, Biagi CA, Yesaki TY et al (2001) Growth of domesticated transgenic fish. Nature 409:781–782

    PubMed  CAS  Google Scholar 

  • Devlin RH, D’Andrade M, Uh M et al (2004) Population effects of growth hormone transgenic coho salmon depend on food availability and genotype by environment interactions. Proc Natl Acad Sci USA 101:9303–9308

    PubMed  CAS  Google Scholar 

  • Du SJ, Gong Z, Fletcher GL et al (1992) Growth hormone gene transfer in Atlantic salmon: use of fish antifreeze/growth hormone chimeric gene construct. In: Hew CL, Fletcher GL (eds) Transgenic fish. World Scientific, Singapore

    Google Scholar 

  • Dunmall KM, Schreer JF (2003) A comparison of the swimming and cardiac performance of fanned and wild Atlantic salmon, Salmo salar, before and after stripping. Aquaculture 220:869–882

    Google Scholar 

  • Egidius E, Hansen LP, Jonsson B et al (1991) Mutual impact of wild and cultured Atlantic salmon in Norway. J Cons Int l’Expl Mer 47:404–410

    Google Scholar 

  • Einum S, Fleming IA (2004) Environmental unpredictability and offspring size: conservative versus diversified bet-hedging. Evol Ecol Res 6:443–455

    Google Scholar 

  • Einum S, Nislow KH (2005) Local-scale density-dependent survival of mobile organisms in continuous habitats: an experimental test using Atlantic salmon. Oecologia 143:203–210

    PubMed  Google Scholar 

  • Elliott JM (1994) Quantitative ecology and the brown trout, Oxford Ser Ecology Evolution. Oxford University Press, Oxford

    Google Scholar 

  • Erkinaro J, Niemelä E, Vähä JP et al (2010) Distribution and biological characteristics of escaped farmed salmon in a major subarctic wild salmon river: implications for monitoring. Can J Fish Aquat Sci 67:130–142

    CAS  Google Scholar 

  • FAO (2010) Species Fact Sheets: Salmo salar (Linnaeus 1758). www.fao.org/fishery/culturedspecies/Salmo_salar/en

  • Feist SW, Peeler EJ, Gardiner R et al (2002) Proliferative kidney disease and renal myxosporidiosis in juvenile salmonids in England and Wales. J Fish Dis 25:451–458

    Google Scholar 

  • Finstad B, Bjørn PA, Nilsen ST (1995) Survival of salmon lice, Lepeophtheirus salmonis Krøyer, on Arctic charr, Salvelinus alpinus (L.), in fresh water. Aquac Res 26:791–795

    Google Scholar 

  • Fiske P, Lund RA, Østborg GM et al (2001) Escapes of reared salmon in coastal and marine fisheries in the period 1989–2000. NINA Oppdragsmeld 704:1–26 (In Norwegian, English abstract)

    Google Scholar 

  • Fiske P, Lund RA, Hansen LP (2005) Identifying fish farm escapees. In: Cadrin SX, Friedland KD, Waldman JD (eds) Stock identification methods. Elsevier, Amsterdam

    Google Scholar 

  • Fiske P, Lund RA, Hansen LP (2006) Relationships between the frequency of farmed Atlantic salmon, Salmo salar L., in wild salmon populations and fish farming activity in Norway, 1989–2004. ICES J Mar Sci 63:1182–1189

    Google Scholar 

  • Fleming IA (1996) Reproductive strategies of Atlantic salmon: ecology and evolution. Rev Fish Biol Fish 6:379–416

    Google Scholar 

  • Fleming IA (1998) Pattern and variability in the breeding system of Atlantic salmon (Salmo salar), with comparisons to other salmonids. Can J Fish Aquat Sci 55(Suppl 1):S59–S76

    Google Scholar 

  • Fleming IA, Einum S (1997) Experimental tests of genetic divergence of farmed from wild Atlantic salmon due to domestication. ICES J Mar Sci 54:1051–1063

    Google Scholar 

  • Fleming IA, Gross MR (1992) Reproductive behaviour of hatchery and wild coho salmon: does it differ? Aquaculture 103:1–21

    Google Scholar 

  • Fleming IA, Gross MR (1993) Breeding success of hatchery and wild coho salmon (Oncorhynchus kisutch) in competition. Ecol Appl 3:230–245

    Google Scholar 

  • Fleming IA, Jonsson B, Gross MR (1994) Phenotypic divergence of sea-ranched, farmed and wild salmon. Can J Fish Aquat Sci 51:2808–2824

    Google Scholar 

  • Fleming IA, Jonsson B, Gross MR et al (1996) An experimental study of the reproductive beha­viour and success of farmed and wild Atlantic salmon (Salmo salar). J Appl Ecol 33:893–905

    Google Scholar 

  • Fleming IA, Lamberg A, Jonsson B (1997) Effects of early experience on the reproductive performance of Atlantic salmon. Behav Ecol 8:470–480

    Google Scholar 

  • Fleming IA, Hindar K, Mjølnerød IB et al (2000) Lifetime success and interactions of farmed salmon invading a native population. Proc R Soc Lond B 267:1517–1523

    CAS  Google Scholar 

  • Fleming IA, Augustsson T, Finstad B et al (2002) Effects of domestication on growth physiology and endocrinology of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 59:1323–1330

    CAS  Google Scholar 

  • Fletcher GL, Shears MA, King MJ et al (1988) Evidence for antifreeze protein gene transfer in Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 45:352–357

    CAS  Google Scholar 

  • Fletcher GL, Davies PL, Hew CL (1992) Genetic engineering of freeze-resistant Atlantic salmon. In: Hew CL, Fletcher GL (eds) Transgenic fish. World Scientific, Singapore

    Google Scholar 

  • Ford MJ (2002) Selection in captivity during supportive breeding may reduce fitness in the wild. Conserv Biol 16:815–825

    Google Scholar 

  • Ford JS, Myers RA (2008) A global assessment of salmon aquaculture impacts on wild salmonids. PLoS Biol 6(2):e33. doi:10.1371/journal.pbio.0060033

    PubMed  Google Scholar 

  • Garant D, Fleming IA, Einum S et al (2003) Alternative male life-history tactics as potential vehicles for speeding introgression of farmed salmon traits into wild populations. Ecol Lett 6:541–549

    Google Scholar 

  • Garcia-Vazquez E, Perez J, Ayllon F et al (2004) Asymmetry of post-F1 interspecific reproductive barriers among brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). Aquaculture 234:77–84

    Google Scholar 

  • Gargan PG, Poole WR, Forde GP (2006) A review of the status of Irish sea trout stocks. In: Harris G, Milner N (eds) Sea trout: biology conservation and management. Blackwell, Oxford

    Google Scholar 

  • Gjedrem T, Gjerde B, Gjøen HM (1991) Genetic origin of Norwegian farmed Atlantic salmon. Aquaculture 98:41–50

    Google Scholar 

  • Gjerde B, Simianer H, Refstie T (1994) Estimates of genetic and phenotypic parameters for body-weight, growth-rate and sexual maturity in Atlantic salmon. Livest Prod Sci 38:133–143

    Google Scholar 

  • Gjøen HM, Bentsen HB (1997) Past, present and future of genetic improvement in salmon aquaculture. ICES J Mar Sci 54:1009–1014

    Google Scholar 

  • Goodman D (2005) Selection equilibrium for hatchery and wild spawning fitness in integrated breeding programs. Can J Fish Aquat Sci 62:374–389

    Google Scholar 

  • Grimnes A, Jakobsen PJ (1996) The physiological effects of salmon lice (Lepeophtheirus salmonis) infection on post smolt of Atlantic salmon (Salmo salar). J Fish Biol 48:1179–1194

    Google Scholar 

  • Gross MR (1998) One species with two biologies: Atlantic salmon (Salmo salar) in the wild and in aquaculture. Can J Fish Aquat Sci 55(Suppl 1):S131–S144

    Google Scholar 

  • Gudjonsson S (1991) Occurrence of reared salmon in natural salmon rivers in Iceland. Aquaculture 98:133–142

    Google Scholar 

  • Han Y, Liu M, Zhang LL et al (2010) Comparison of reproductive development in triploid and diploid female rainbow trout Oncorhynchus mykiss. J Fish Biol 76:1742–1750

    PubMed  CAS  Google Scholar 

  • Handeland SO, Bjørnsson BT, Arnesen AM (2003) Seawater adaptation and growth of post-smolt Atlantic salmon (Salmo salar) of wild and farmed strains. Aquaculture 220:367–384

    Google Scholar 

  • Hansen LP (2006) Migration and survival of farmed Atlantic salmon (Salmo salar L.) released from two Norwegian fish farms. ICES J Mar Sci 63:1211–1217

    Google Scholar 

  • Hansen LP, Jacobsen JA (1998) Salmon research at Faroe Islands. NINA Oppdragsmeld 524:1–37 (In Norwegian, English abstract)

    Google Scholar 

  • Hansen LP, Jacobsen JA (2003) Origin and migration of wild and escaped farmed Atlantic salmon, Salmo salar L., in oceanic areas north of the Faroe Islands. ICES J Mar Sci 60:110–119

    Google Scholar 

  • Hansen LP, Jonsson B (1989) Salmon ranching experiments in the River Imsa: effect of timing of Atlantic salmon (Salmo salar) smolt migration. Aquaculture 82:367–373

    Google Scholar 

  • Hansen LP, Jonsson B (1991) The effect of timing of Atlantic salmon smolt and post-smolt release on the distribution of adult return. Aquaculture 98:61–67

    Google Scholar 

  • Hansen LP, Youngson AF (2010) Dispersal of large farmed Atlantic salmon, Salmo salar, from simulated escapes at fish farms in Norway and Scotland. Fish Manage Ecol 17:28–32

    Google Scholar 

  • Hansen LP, Døving KB, Jonsson B (1987) Migration of farmed adult Atlantic salmon with and without olfactory sense, released on the Norwegian coast. J Fish Biol 30:713–721

    Google Scholar 

  • Hansen LP, Jonsson B, Andersen R (1989) Salmon ranching experiments in the River Imsa: is homing dependent on sequential imprinting of migrating smolts? In: Brannon E, Jonsson B (eds) Migration and distribution of salmonids. University of Washington’s School of Fisheries, Seattle

    Google Scholar 

  • Hansen LP, Jonsson N, Jonsson B (1993) Oceanic migration of homing Atlantic salmon. Anim Behav 45:927–941

    Google Scholar 

  • Hansen LP, Jacobsen JA, Lund RA (1999) The incidence of escaped farmed Atlantic salmon, Salmo salar L., in the Faroese fishery and estimates of catches of wild salmon. ICES J Mar Sci 56:200–206

    Google Scholar 

  • Hansen LP, Fiske P, Holm M et al (2006) Bestandsstatus for laks (Population status for Atlantic salmon). Utred DN 2006–3:1–48 (In Norwegian)

    Google Scholar 

  • Hard JJ, Berejikian BA, Tezak EP et al (2000) Evidence for morphometric differentiation of wild and captively reared adult coho salmon: a geometric analysis. Environ Biol Fish 58:61–73

    Google Scholar 

  • Håstein T, Lindstad T (1991) Diseases in wild and cultured salmon: possible interactions. Aquaculture 98:277–288

    Google Scholar 

  • Hedenskog M, Petersson E, Järvi T (2002) Agonistic behaviour and growth in newly emerged brown trout (Salmo trutta L.) of sea ranched and wild origin. Anim Behav 28:145–153

    Google Scholar 

  • Heggberget TG, Hvidsten NA, Gunnerød TB et al (1991) Distribution of adult recaptures from hatchery-reared Atlantic salmon (Salmo salar) smolts released in and off-shore of the River Surna, Western Norway. Aquaculture 98:89–96

    Google Scholar 

  • Heggberget TG, Johnsen BO, Hindar K et al (1993a) Interactions between wild and cultured Atlantic salmon: a review of the Norwegian experience. Fish Res 18:123–146

    Google Scholar 

  • Heggberget TG, Økland F, Ugedal O (1993b) Distribution and migratory behaviour of adult wild and farmed Atlantic salmon (Salmo salar) during return migration. Aquaculture 118:73–83

    Google Scholar 

  • Heuch PA, Bjørn PA, Finstad B et al (2005) A review of the Norwegian “National action plan against salmon lice on salmonids”: the effect on wild salmonids. Aquaculture 246:79–92

    Google Scholar 

  • Hindar K, Jonsson B (1995) Impacts of aquaculture and hatcheries on wild fish. In: Philipp DP, Epifanio JM, Marsden JE et al (eds) Protection of aquatic biodiversity: proceedings of the World Fisheries Congress, Theme-3. Oxford and IBH Publishing, New Delhi

    Google Scholar 

  • Hindar K, L’Abée-Lund JH (1992) Identification of hatchery-reared and wild Atlantic salmon juveniles based on examination of otoliths. Aquacult Fish Manage 23:235–241

    Google Scholar 

  • Hindar K, Ryman N, Utter F (1991) Genetic effects of cultured fish on natural fish populations. Can J Fish Aquat Sci 48:945–957

    Google Scholar 

  • Hindar K, Fleming IA, McGinnity P et al (2006) Genetic and ecological effects of salmon farming on wild salmon: modeling from experimental results. ICES J Mar Sci 63:1234–1247

    CAS  Google Scholar 

  • Hoag H (2003) Transgenic salmon still out in the cold in United States. Nature 421:304

    PubMed  CAS  Google Scholar 

  • Huntingford FA, Adams C (2005) Behavioural syndromes in farmed fish: implications for production and welfare. Behaviour 142:1207–1221

    Google Scholar 

  • ICES (2007) Report of the working group on North Atlantic salmon (WGNAS). ICES CM 2007/ACFM 13

    Google Scholar 

  • Jacobsen JA, Lund RA, Hansen LP et al (2001) Seasonal differences in the origin of Atlantic salmon (Salmo salar L.) in the Norwegian Sea based on estimates from age structures and tag returns. Fish Res 52:169–177

    Google Scholar 

  • Johnsen BO, Jensen AJ (1991) The Gyrodactylus story in Norway. Aquaculture 98:289–302

    Google Scholar 

  • Johnsen BO, Jensen AJ (1994) The spread of furunculosis in salmonids in Norwegian rivers. J Fish Biol 45:47–55

    Google Scholar 

  • Johnsen BO, Jensen AJ, Økland F et al (1998) The use of radiotelemetry for identifying migratory behaviour in wild and farmed Atlantic salmon ascending the Suldalslågen River in Southern Norway. In: Jungwirth M, Schmutz S, Weiss S (eds) Fish migration and fish bypasses. Fish New Books, Oxford

    Google Scholar 

  • Johnsson JI, Björnsson BT (2001) Growth-enhanced fish can be competitive in the wild. Funct Ecol 15:654–659

    Google Scholar 

  • Jonasson J, Gjerde B, Gjedrem T (1997) Genetic parameters for return rate and body weight of sea-ranched Atlantic salmon. Aquaculture 154:219–231

    Google Scholar 

  • Jonsson B (1997) A review of ecological and behavioural interactions between cultured and wild Atlantic salmon. ICES J Mar Sci 54:1031–1039

    Google Scholar 

  • Jonsson B, Fleming IA (1993) Enhancement of wild salmon populations. In: Sundnes G (ed) Human impact on self-recruiting populations. Royal Norwegian Society of Sciences and Letters Foundation, Tapir Publishers, Trondheim

    Google Scholar 

  • Jonsson N, Jonsson B (2002) Migration of anadromous brown trout in a Norwegian river. Freshw Biol 47:1391–1401

    Google Scholar 

  • Jonsson B, Jonsson N (2006) Cultured salmon in nature: a review of their ecology and interactions with wild fish. ICES J Mar Sci 63:1162–1181

    Google Scholar 

  • Jonsson B, Jonsson N (2009) Migratory timing, marine survival and growth of anadromous brown trout Salmo trutta in the River Imsa, Norway. J Fish Biol 74:621–638

    PubMed  CAS  Google Scholar 

  • Jonsson B, Jonsson N, Hansen LP (1990) Does juvenile experience affect migration and spawning of adult Atlantic salmon? Behav Ecol Sociobiol 26:225–230

    Google Scholar 

  • Jonsson B, Jonsson N, Hansen LP (1991) Differences in life history and migratory behaviour between wild and hatchery reared Atlantic salmon in nature. Aquaculture 98:69–78

    Google Scholar 

  • Jonsson N, Hansen LP, Jonsson B (1993a) Migratory behaviour and growth of hatchery-reared post-smolt Atlantic salmon Salmo salar L. J Fish Biol 42:435–443

    Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP et al (1993b) Coastal movement and growth of domesticated rainbow trout (Oncorhynchus mykiss (Walbaum)) in Norway. Ecol Freshw Fish 2:152–159

    Google Scholar 

  • Jonsson N, Hansen LP, Jonsson B (1994a) Juvenile experience influences timing of adult river ascent in Atlantic salmon. Anim Behav 48:740–742

    Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP et al (1994b) Effects of sea-water-acclimatization and release sites on survival of hatchery-reared brown trout Salmo trutta. J Fish Biol 44:973–981

    Google Scholar 

  • Jonsson N, Jonsson B, Fleming IA (1996) Does early growth rate cause a phenotypically plastic response in egg production of Atlantic salmon? Funct Ecol 10:89–96

    Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP (1997) Changes in proximate composition and estimates of energetic costs during upstream migration and spawning in Atlantic salmon Salmo salar. J Anim Ecol 66:425–436

    Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP (1998) The relative role of density-dependent and density-independent survival in the life cycle of Atlantic salmon Salmo salar. J Anim Ecol 67:751–762

    Google Scholar 

  • Jonsson B, Jonsson N, Hansen LP (2003a) Atlantic salmon straying from the River Imsa. J Fish Biol 62:641–657

    Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP (2003b) Marine survival and growth of wild and released hatchery reared Atlantic salmon. J Appl Ecol 40:900–911

    Google Scholar 

  • Jonsson B, Boxaspen K, Fiske P et al (2007) Interaksjoner mellom lakseoppdrett og villaks (Interactions between salmon farming and wild salmon). Kunnskapsserien for laks og vannmiljø 2 (In Norwegian)

    Google Scholar 

  • Juanes F, Buckel JA, Scharf FS (2002) Feeding ecology of piscivorous fishes. In: Hart PJB, Reynolds JD (eds) Handbook of fish biology and fisheries, Fish biology vol 1. Blackwell Science, Oxford

    Google Scholar 

  • Kapuscinski AR (2005) Current scientific understanding of the environmental biosafety of transgenic fish and shellfish. Rev Sci Tech Off Int Epiz 24:309–322

    CAS  Google Scholar 

  • Kihslinger RL, Nevitt GA (2006) Early rearing environment impacts cerebellar growth in juvenile salmon. J Exp Biol 209:504–509

    PubMed  Google Scholar 

  • Kihslinger RL, Lema SC, Nevitt GA (2006) Environmental rearing conditions produce differences in the relative brain size of wild Chinook salmon Oncorhynchus tshawytscha. Comp Biochem Physiol A Mol Integr Physiol 145:145–151

    PubMed  CAS  Google Scholar 

  • Klemetsen A, Amundsen P-A, Dempson JB et al (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.) a review of aspects of their life histories. Ecol Freshw Fish 12:1–59

    Google Scholar 

  • Kolstad K, Grisdale-Helland B, Gjerde B (2004) Family differences in feed efficiency in Atlantic salmon (Salmo salar). Aquaculture 241:169–177

    Google Scholar 

  • Kolstad K, Heuch PA, Gjerde B et al (2005) Genetic variation in resistance of Atlantic salmon (Salmo salar) to the salmon louse Lepeophtheirus salmonis: a possible means of disease control. Aquaculture 247:145–151

    Google Scholar 

  • Kostow KE (2004) Differences in juvenile phenotypes and survival between hatchery stocks and a natural population provide evidence for modified selection due to captive breeding. Can J Fish Aquat Sci 61:577–589

    Google Scholar 

  • Krkosek K, Lewis M, Volpe J (2005) Transmission dynamics of parasitic sea lice from farm to wild salmon. Proc R Soc Lond B 272:689–696

    Google Scholar 

  • Krkosek M, Lewis M, Morton A et al (2006) Epizootics of wild fish induced by farm fish. Proc Natl Acad Sci USA 103:15506–15510

    PubMed  CAS  Google Scholar 

  • Krkosek M, Ford JS, Morton AB et al (2007) Declining wild salmon populations in relation to parasites from farm salmon. Science 318:1772–1775

    PubMed  CAS  Google Scholar 

  • Lacroix GL, Knox D (2005) Distribution of Atlantic salmon (Salmo salar) postsmolts of different origins in the Bay of Fundy and Gulf of Maine and evaluation of factors affecting migration, growth, and survival. Can J Fish Aquat Sci 62:1363–1376

    Google Scholar 

  • Lacroix GK, Stokesbury MJW (2004) Adult return of farmed Atlantic salmon escaped as juveniles into freshwater. Trans Am Fish Soc 133:484–490

    Google Scholar 

  • Lahti K, Huuskonen H, Laurila A et al (2002) Metabolic rate and aggressiveness between brown trout populations. Funct Ecol 16:167–174

    Google Scholar 

  • Lall SP, Paterson WD, Hines JA et al (1985) Control of bacterial kidney disease in Atlantic salmon, Salmo salar L., by dietary modification. J Fish Dis 8:11–124

    Google Scholar 

  • Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50:434–437

    Google Scholar 

  • Lema SC, Hodges MJ, Marchetti MP et al (2005) Proliferation zones in the salmon telencephalon and evidence for environmental influence on proliferation rate. Comp Biochem Physiol A Mol Integr Physiol 141:327–335

    PubMed  Google Scholar 

  • Ling N (2003) Rotenone: a review of its toxicity and use for fisheries management, Science for conservation 211. New Zealand Department of Conservation, Wellington

    Google Scholar 

  • Lund RA (1998) Rømt oppdrettslaks i sjø- og elvefisket i årene 1989–1997 (Escaped farmed salmon in sea and river fisheries during 1989–1997). NINA Oppdragsmeld 556:1–25 (In Norwegian)

    Google Scholar 

  • Lund RA, Hansen LP (1991) Identification of wild and reared Atlantic salmon, Salmo salar L., using scale characters. Aquacult Fish Manage 22:499–508

    Google Scholar 

  • Lund RA, Hansen LP, Järvi T (1989) Identification of reared and wild salmon by external morphology, size of fins and scale characteristics. NINA Res Rep 1:1–54 (In Norwegian, English summary)

    Google Scholar 

  • Lund RA, Midtlyng PJ, Hansen LP (1997) Post-vaccination intra-abdominal adhesions as a marker to identify Atlantic salmon, Salmo salar L., escaped from commercial fish farms. Aquaculture 154:27–37

    Google Scholar 

  • Lura H (1995) Domesticated female Atlantic salmon in the wild: spawning success and contribution to local populations. Dr Sci thesis, University of Bergen

    Google Scholar 

  • Lura H, Sægrov H (1991) A method of separating offspring from farmed and wild Atlantic salmon Salmo salar based on different ratios of optical isomers of astaxanthin. Can J Fish Aquat Sci 48:429–433

    CAS  Google Scholar 

  • Lura H, Barlaup BT, Sægrov H (1993) Spawning behaviour of a farmed escaped female Atlantic salmon (Salmo salar). J Fish Biol 42:311–313

    Google Scholar 

  • Lynch M, O’Hely M (2001) Captive breeding and the genetic fitness of natural populations. Conserv Genet 2:363–378

    Google Scholar 

  • Maclean N, Laight RJ (2001) Transgenic fish: an evaluation of benefits and risks. Fish Fish 1:146–172

    Google Scholar 

  • MacLean A, Metcalfe NB, Mitchell D (2000) Alternative comparative strategies in juvenile Atlantic salmon (Salmo salar): evidence from fin damage. Aquaculture 184:291–302

    Google Scholar 

  • Marchetti MP, Nevitt GA (2003) Effects of hatchery rearing on brain structures of rainbow trout, Oncorhynchus mykiss. Environ Biol Fish 66:9–14

    Google Scholar 

  • Matthews MA, Poole WR, Thompson CE et al (2002) Incidence of hybridization between Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L., in Ireland. Fish Manage Ecol 7:337–347

    Google Scholar 

  • McGinnity P, Stone C, Taggart JB et al (1997) Genetic impact of escaped farmed Atlantic salmon (Salmo salar L.) on native populations: use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. ICES J Mar Sci 54:998–1008

    Google Scholar 

  • McGinnity P, Prodöhl P, Ferguson A et al (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as result of interactions with escaped farmed salmon. Proc R Soc Lond B 270:2443–2450

    Google Scholar 

  • McGinnity P, Prodöhl P, O’Maoileidigh N et al (2004) Differential lifetime success and performance of native and non-native Atlantic salmon examined under communal natural conditions. J Fish Biol 65(Suppl A):S173–S187

    Google Scholar 

  • McGinnity P, de Eyto E, Cross TF et al (2007) Population specific smolt development, migration and maturity schedules in Atlantic salmon in a natural river environment. Aquaculture 273:257–268

    Google Scholar 

  • McGinnity P, Jennings E, de Eyto E et al (2009) Impact of naturally spawning captive-bred Atlantic salmon on wild populations: depressed recruitment and increased risk of climate-mediated extinction. Proc R Soc Lond B 276:3601–3610

    Google Scholar 

  • McLean PH, Smith GW, Wilson MJ (1990) Residence time of the sea louse, Lepeophtheirus salmonis K., on the Atlantic salmon, Salmo salar L., after immersion in fresh water. J Fish Biol 37:311–314

    Google Scholar 

  • McLean JE, Bentzen P, Quinn TP (2005) Nonrandom, size- and timing-biased breeding in a hatchery population of steelhead trout. Conserv Biol 19:446–454

    Google Scholar 

  • Melamed P, Gong Z, Fletcher G et al (2002) The potential impact of modern biotechnology on fish aquaculture. Aquaculture 204:255–269

    CAS  Google Scholar 

  • Milner NJ, Evans R (2003) The incidence of escaped Irish farmed salmon in England and Welsh rivers. Fish Manage Ecol 10:403–406

    Google Scholar 

  • Mjølnerød IB, Refseth UH, Karlsen E et al (1997) Genetic differences between two wild and one farmed population of Atlantic salmon (Salmo salar) revealed by three classes of genetic markers. Hereditas 127:239–248

    Google Scholar 

  • Mo TA (1994) Status of Gyrodactylus salaris problems and research in Norway. In: Pike AW, Lewis JW (eds) Parasitic diseases of fish. Samara, Dyfed

    Google Scholar 

  • Mori T, Devlin RH (1999) Transgene and host GH gene expression in pituitary and nonpituitary tissues of normal and GH transgenic salmon. Mol Cell Endocrinol 149:129–139

    PubMed  CAS  Google Scholar 

  • Morton A, Routledge R, Peet C et al (2004) Sea lice (Lepeophtheirus salmonis) infection rates on juvenile pink (Oncorhynchus gorbuscha) salmon in the nearshore marine environment of British Columbia, Canada. Can J Fish Aquat Sci 61:147–157

    Google Scholar 

  • Morton AB, Routledge R, Krokosek M (2008) Sea lice infestation of wild juvenile salmon and herring associated with fish farms off the east central coast of Vancouver Island, BC. N Am J Fish Manage 28:523–532

    Google Scholar 

  • Muir WM, Howard RD (1999) Possible ecological risks of transgenic organism release when transgenes affect mating success: sexual selection and the Trojan gene hypothesis. Prod Natl Acad Sci USA 96:13853–13856

    CAS  Google Scholar 

  • Muir WM, Howard RD (2002) Assessment of possible ecological risks and hazards of transgenic fish with implications for other sexually reproducing organisms. Transgenic Res 11:101–114

    PubMed  CAS  Google Scholar 

  • Nash CE (2003) Interactions of Atlantic salmon in the Pacific Northwest VI. A synopsis of the risk and uncertainty. Fish Res 62:339–347

    Google Scholar 

  • Naylor R, Hindar K, Fleming IA et al (2005) Fugitive salmon: assessing the risk of escaped fish from net-pen aquaculture. Bioscience 55:427–437

    Google Scholar 

  • Norris AT, Bradley DG, Cunningham EP (1999) Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations. Aquaculture 180:247–264

    Google Scholar 

  • O’Reilly PT, Carr JW, Whoriskey FG et al (2006) Detection of European ancestry in escaped farmed Atlantic salmon, Salmo salar L., in the Magaguadavic river and Chamcook stream, New Brunswick, Canada. ICES J Mar Sci 63:1256–1263

    Google Scholar 

  • Økland F, Heggberget TG, Jonsson B (1995) Migratory behaviour of wild and farmed Atlantic salmon (Salmo salar) during spawning. J Fish Biol 46:1–7

    Google Scholar 

  • Oppedal F, Taranger GL, Juell JE et al (1999) Growth, osmoregulation and sexual maturation of underyearling Atlantic salmon smolts Salmo salar L. exposed to different intensities of continuous light in sea cages. Aquacult Res 30:491–499

    Google Scholar 

  • Paterson WD, Gallant C, Desautels D et al (1979) Detection of bacterial kidney disease in wild salmonids in the Margaree river system and adjacent water using an indirect fluorescent antibody technique. J Fish Res Board Can 36:1464–1468

    Google Scholar 

  • Petersson E, Järvi T (2003) Growth and social interactions of wild and sea-ranched brown trout and their hybrids. J Fish Biol 63:673–686

    Google Scholar 

  • Piggins DJ, Mills CPR (1985) Comparative aspects of the biology of naturally produced and hatchery-reared Atlantic salmon smolts (Salmo salar L.). Aquaculture 45:321–333

    Google Scholar 

  • Poléo ABS, Schjolden J, Hansen H et al (2004) The effect of various metals on Gyrodactylus salaris (Platyhelminthes, Monogenea) infections in Atlantic salmon (Salmo salar). Parasitology 128:1–9

    Google Scholar 

  • Poole WR, Nolan DT, Wevers T et al (2003) An ecophysiological comparison of wild and hatchery-raised Atlantic salmon (Salmo salar L.) smolts from the Burrishoole system, western Ireland. Aquaculture 222:301–314

    Google Scholar 

  • Poppe TT, Johansen R, Gunnes G et al (2003) Heart morphology in wild and farmed Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss. Dis Aquat Organ 57:103–108

    PubMed  Google Scholar 

  • Price CS, Schreck CB (2003) Effects of bacterial kidney disease on saltwater preference of juvenile spring chinook salmon, Oncorhynchus tshawytscha. Aquaculture 222:331–341

    Google Scholar 

  • Rach JJ, Gailkowski MP, Ramsay RT (2000) Efficacy of hydrogen peroxide to control parasitic infestations on hatchery-reared fish. J Aquat Anim Health 12:267–273

    Google Scholar 

  • Reisenbichler RR, McIntyre JD (1977) Genetic differences in growth and survival of juvenile hatchery and wild steelhead trout, Salmo gairdneri. J Fish Res Board Can 34:123–128

    Google Scholar 

  • Reisenbichler RR, Rubin SP (1999) Genetic changes from artificial propagation of Pacific salmon affect the productivity and viability of supplemented populations. ICES J Mar Sci 56:459–466

    Google Scholar 

  • Ricker WE (1972) Hereditary and environmental factors affecting certain salmonid populations. In: Simon RC, Larkin PA (eds) The stock concept in Pacific salmon, MacMillan Lectures in Fisheries. UBC, Vancouver

    Google Scholar 

  • Roberts RJ, Pearson MD (2005) Infectious pancreatic necrosis in Atlantic salmon, Salmo salar L. J Fish Dis 28:383–390

    PubMed  CAS  Google Scholar 

  • Ross N, Firth K, Wang A et al (2000) Changes in hydrolytic enzyme activities of naive Atlantic salmon, Salmo salar, skin mucus due to infection with the salmon louse, Lepeophtheirus salmonis, and cortisol implantation. Dis Aquat Organ 41:43–51

    PubMed  CAS  Google Scholar 

  • Ruane N, Nolan D, Rotllant J et al (2000) Experimental exposure of rainbow trout, Oncorhynchus mykiss (Walbaum), to the infective stages of the sea louse, Lepeophtheirus salmonis (Krøyer), influences the physiological response to an acute stressor. Fish Shellfish Immunol 10:451–463

    PubMed  CAS  Google Scholar 

  • Ruzzante DE, Hansen MM, Meldrup D et al (2004) Stocking impact and migration pattern in an anadromous brown trout (Salmo trutta) complex: where have all the stocked spawning sea trout gone? Mol Biol 13:1433–1445

    CAS  Google Scholar 

  • Sægrov H, Urdal K (2006) Rømt oppdrettslaks i sjø og elv; mengd og opphav (Escaped farmed salmon at sea and in rivers; abundance and origin). Rådgivende Biologer Rapp 947:1–26 (In Norwegian)

    Google Scholar 

  • Saloniemi I, Jokikokko E, Kallio-Nyberg I et al (2004) Survival of reared and wild Atlantic salmon smolts: size matters more in bad years. ICES J Mar Sci 61:782–787

    Google Scholar 

  • Saunders RL, Fletcher GL, Hew CL (1998) Smolt development in growth hormone transgenic Atlantic salmon. Aquaculture 168:177–193

    CAS  Google Scholar 

  • Schiermeier Q (2003) Fish farms’ threat to salmon exposed. Nature 425:753

    PubMed  CAS  Google Scholar 

  • Schmahl G, Taraschewski H (1987) Treatment of fish parasites. 2. Effects of praziquantel, niclosamide, levamisole-HC1, and metrifonate on Monogenea (Gyrodactylus aculeate, Diplozoon paradoxum). Parasitol Res 73:341–351

    PubMed  CAS  Google Scholar 

  • Schmahl G, Mehlhorn H, Haberkorn A (1988) Sym. triazinone (toltrazuril) effective against fish-parasitizing Monogenea. Parasitol Res 75:67–68

    PubMed  CAS  Google Scholar 

  • Schram TA (1993) Supplementary descriptions of the developmental stages of Lepeophtheirus salmonis (Krøyer, 1837) (Copepoda: Caligidae). In: Boxshall GA, Defaye D (eds) Pathogens of wild and farmed fish. Ellis Horwood, New York

    Google Scholar 

  • Seierstad SL, Poppe TT, Koppang EO et al (2005) Influence of dietary composition on cardiac pathology in farmed Atlantic salmon, Salmo salar. J Fish Dis 28:677–690

    PubMed  CAS  Google Scholar 

  • Sheehan TE, Kocik JE, Cardin SX et al (2005) Marine growth and morphometrics for three populations of Atlantic salmon from eastern Maine, USA. Trans Am Fish Soc 134:775–788

    Google Scholar 

  • Sherer TB, Betarbet R, Testa CM et al (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764

    PubMed  CAS  Google Scholar 

  • Skaala Ø, Høyheim B, Glover K et al (2004) Microsatellite analysis in domesticated and wild Atlantic salmon (Salmo salar L.): allelic diversity and identification of individuals. Aquaculture 240:131–143

    CAS  Google Scholar 

  • Skaala Ø, Wennevik V, Glover K (2006) Evidence of temporal changes in wild Atlantic salmon Salmo salar L. populations affected by farm escapees. ICES J Mar Sci 63:1224–1233

    CAS  Google Scholar 

  • Skilbrei O, Wennevik V (2006) The use of catch statistics to monitor the abundance of escaped farmed Atlantic salmon and rainbow trout in the sea. ICES J Mar Sci 63:1190–1200

    Google Scholar 

  • Skilbrei OT, Johnsen BO, Heggberget TG et al (1998) Havbeite med laks – artsrapport (Salmon ranching – species report). Norwegian Research Council, Oslo (In Norwegian)

    Google Scholar 

  • Soleng A, Poléo ABS, Alstad NEW et al (1999) Aqueous aluminium eliminates Gyrodactylus salaris (Platyhelminthes, Monogenea) infections in Atlantic salmon. Parasitology 119:19–25

    PubMed  CAS  Google Scholar 

  • Soleng A, Poleo ABS, Bakke TA (2005) Toxicity of aqueous aluminium to the ectoparasitic monogenean Gyrodactylus salaris. Aquaculture 250:616–620

    CAS  Google Scholar 

  • Soto D, Jara F, Moreno C (2001) Escaped salmon in the inner seas, southern Chile: facing ecological and social conflicts. Ecol Appl 11:1750–1762

    Google Scholar 

  • Sterud E, Forseth T, Ugedal O et al (2007) Severe mortality in wild Atlantic salmon Salmo salar due to proliferative kidney disease (PKD) caused by Tetracapsuloides bryosalmonae (Myxozoa). Dis Aquat Organ 77:191–198

    PubMed  Google Scholar 

  • Stevens ED, Sutterlin A, Cook T (1998) Respiratory metabolism and swimming performance in growth hormone transgenic Atlantic salmon. Can J Fish Aquat Sci 55:2028–2035

    Google Scholar 

  • Sundell K, Dellefors C, Björnsson BT (1998) Wild and hatchery-reared brown trout, Salmo trutta, differ in smolt related characteristics during parr-smolt transformation. Aquaculture 167:53–65

    Google Scholar 

  • Sundström LF, Devlin RH, Johnsson JI et al (2003) Vertical position reflects increased feeding motivation in growth hormone transgenic coho salmon (Oncorhynchus kisutch). Ethology 109:701–712

    Google Scholar 

  • Sundström LF, Bohlin T, Johnsson JI (2004a) Density-dependent growth in hatchery-reared brown trout released into a natural stream. J Fish Biol 65:1385–1391

    Google Scholar 

  • Sundström LF, Lohmus M, Johnsson JI et al (2004b) Growth hormone transgenic salmon pay for growth potential with increased predation mortality. Proc R Soc Lond B (Suppl) 271:350–252

    Google Scholar 

  • Sundström LF, Peterson E, Johnsson JI et al (2005) Heart rate responses to predation risk in Salmo trutta are affected by the rearing environment. J Fish Biol 67:1280–1286

    Google Scholar 

  • Sutterlin AM, Saunders RL, Henderson EB et al (1982) The homing of Atlantic salmon (Salmo salar) to a marine site. Can Tech Rep Fish Aquat Sci 1058:1–6

    Google Scholar 

  • Swain DP, Riddell BE, Murray CB (1991) Morphological differences between hatchery and wild populations of coho salmon (Oncorhynchus kisutch): environmental versus genetic origin. Can J Fish Aquat Sci 48:1783–1791

    Google Scholar 

  • Tacon AGJ (2003) Aquaculture production trends analysis. FAO Circ 886, Rome

    Google Scholar 

  • Taylor EB (1986) Differences in morphology between wild and hatchery populations of juvenile coho salmon. Progr Fish Cult 48:171–176

    Google Scholar 

  • Thodesen J, Grisdale-Helland B, Helland SJ et al (1999) Feed intake, growth and feed utilization of offspring from wild and selected Atlantic salmon (Salmo salar). Aquaculture 180:237–246

    Google Scholar 

  • Thorpe JE, Miles MS, Keay DS (1984) Developmental rate, fecundity and egg size in Atlantic salmon, Salmo salar L. Aquaculture 43:289–305

    Google Scholar 

  • Thorstad EB, Heggberget TG, Økland F (1998) Migratory behaviour of adult wild and escaped farmed Atlantic salmon, Salmo salar L., during and after spawning in a Norwegian river. Aquacult Res 29:419–428

    Google Scholar 

  • Thorstad EB, Fleming IA, McGinnity P et al (2008) Incidence and impacts of escaped farmed Atlantic salmon Salmo salar in nature. NINA Special Report 36:1–110

    Google Scholar 

  • Tops S, Lockwood W, Okamura B (2006) Temperature-driven proliferation of Tetracap­suloides bryosalmoniae in bryozoans hosts portends salmonid declines. Dis Aquat Organ 70:227–236

    PubMed  CAS  Google Scholar 

  • Tufto J (2001) Effects of releasing maladapted individuals: a demographic-evolutionary model. Am Nat 158:331–340

    PubMed  CAS  Google Scholar 

  • Tufto J, Hindar K (2003) Effective size in management and conservation of subdivided populations. J Theor Biol 222:273–281

    PubMed  Google Scholar 

  • Tully O, Nolan DT (2002) A review of the population biology and host – parasite interactions of the sea louse, Lepeophtheirus salmonis (Copepoda: Caligidae). Parasitology 124(Suppl):S165–S182

    PubMed  Google Scholar 

  • Tully O, Gargan P, Poole WR et al (1999) Spatial and temporal variation in infestation of sea trout (Salmo trutta L.) by the caligid copepod Lepeophtheirus salmonis (Krøyer) in relation to source of infection in Ireland. Parasitology 119:41–51

    PubMed  Google Scholar 

  • Ugedal O, Finstad B, Damsgård B et al (1998) Seawater tolerance and downstream migration in hatchery-reared and wild brown trout. Aquaculture 168:395–405

    Google Scholar 

  • Urke HA, Koksvik J, Arnekleiv JV et al (2010) Seawater tolerance in Atlantic salmon, Salmo salar L., brown trout, Salmo trutta L., and S. salar  ×  S. trutta hybrids smolt. Fish Physiol Biochem 36:845–853

    PubMed  CAS  Google Scholar 

  • Vøllestad LA, Quinn TP (2003) Trade-off between growth rate and aggression in juvenile coho salmon, Oncorhynchus kisutch. Anim Behav 66:561–568

    Google Scholar 

  • Volpe J, Taylor E, Rimmer D et al (2000) Evidence of natural reproduction of aquaculture-escaped Atlantic salmon in a coastal British Columbia River. Conserv Biol 14:899–903

    Google Scholar 

  • Volpe J, Glickman B, Anholt B (2001) Reproduction of Atlantic salmon in a controlled stream channel on Vancouver Island, British Columbia. Trans Am Fish Soc 130:489–494

    Google Scholar 

  • Von Cramon-Taubadel S, Ling EN, Cotter D et al (2005) Determination of body shape variation in Irish hatchery-reared and wild Atlantic salmon. J Fish Biol 66:1471–1482

    Google Scholar 

  • Wagner GN, McKinley RS, Bjørn PA et al (2003) Physiological impact of sea lice on swimming performance of Atlantic salmon. J Fish Biol 62:1000–1009

    Google Scholar 

  • Wahli T, Bernet D, Steiner PA et al (2007) Geographic distribution of Tetracapsuloides bryosalmonae infected fish in Swiss rivers: an update. Aquat Sci Res Acr Bound 69:3–11

    Google Scholar 

  • Waknitz FW, Iwamoto RN, Strom MS (2003) Interactions of Atlantic salmon in the Pacific Northwest IV: impacts on local ecosystems. Fish Res 62:307–328

    Google Scholar 

  • Walker AM, Beveridge MCM, Crozier W et al (2006) Monitoring the incidence of escaped farmed salmon, Salmo salar L., in rivers and fisheries of the United Kingdom and Ireland: current progress and recommendations for future programmes. ICES J Mar Sci 63:1201–1210

    Google Scholar 

  • Wang JL, Ryman N (2001) Genetic effects of multiple generations of supportive breeding. Conserv Biol 15:1619–1631

    Google Scholar 

  • Wang S, Hard JJ, Utter F (2002) Salmonid inbreeding: a review. Rev Fish Biol Fish 11:301–319

    Google Scholar 

  • Webb JH, Youngson AF (1992) Reared Atlantic salmon, Salmo salar L., in the catches of a salmon fishery on the western coast of Scotland. Aquacult Fish Manage 23:393–397

    Google Scholar 

  • Webb JH, Hay DW, Cunningham PD et al (1991) The spawning behaviour of escaped farmed and wild Atlantic salmon (Salmo salar L.) in a northern Scottish river. Aquaculture 98:97–110

    Google Scholar 

  • Webb JH, McLaren IS, Donaghy MJ et al (1993a) Spawning of farmed Atlantic salmon, Salmo salar L., in the second year after their escape. Aquacult Fish Manage 24:557–561

    Google Scholar 

  • Webb JH, Youngson AF, Thompson CE et al (1993b) Spawning of escaped farmed Atlantic salmon, Salmo salar L., in western and northern Scottish rivers: egg deposition by females. Aquacult Fish Manage 24:663–670

    Google Scholar 

  • Weber ED, Fausch KD (2003) Interactions between hatchery and wild salmonids in streams: differences in biology and evidence for competition. Can J Fish Aquat Sci 60:1018–1036

    Google Scholar 

  • Weir LK, Hutchings JA, Fleming IA et al (2005) Spawning behaviour and success of mature male Atlantic salmon (Salmo salar) parr of farmed and wild origin. Can J Fish Aquat Sci 62:1153–1160

    Google Scholar 

  • White HC (1940) “Sea-lice” and death of salmon. J Fish Res Board Can 5:172–175

    Google Scholar 

  • Whoriskey FG, Brooking P, Doucette G et al (2006) Movements and survival of sonically tagged farmed Atlantic salmon released in Cobscook Bay, Maine, USA. ICES J Mar Sci 63:1218–1223

    Google Scholar 

  • Wild V, Simianer H, Gjøen HM et al (1994) Genetic parameters and genotype x environment interaction for early sexual maturity in Atlantic salmon (Salmo salar). Aquaculture 128:51–65

    Google Scholar 

  • Youngson AF, Verspoor E (1998) Interactions between wild and introduced Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 55(Suppl 1):S153–S160

    Google Scholar 

  • Youngson AF, Webb JH, MacLean JC et al (1997) Frequency of occurrence of reared Atlantic salmon in Scottish salmon fisheries. ICES J Mar Sci 54:1216–1220

    Google Scholar 

  • Zimmerman CE, Nielsen JL (2004) Introduction. Rev Fish Biol Fish 14:301–303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bror Jonsson .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jonsson, B., Jonsson, N. (2011). Farmed Atlantic Salmon in Nature. In: Ecology of Atlantic Salmon and Brown Trout. Fish & Fisheries Series, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1189-1_10

Download citation

Publish with us

Policies and ethics