Skip to main content

Sustaining Agricultural Systems in the Old and New Worlds: A Long-Term Socio-Ecological Comparison

  • Chapter
  • First Online:
Long Term Socio-Ecological Research

Part of the book series: Human-Environment Interactions ((HUEN,volume 2))

Abstract

During the late nineteenth and early twentieth centuries, tens of millions of migrants left Europe for the Americas. Using case studies from Austria and Kansas, this chapter compares the socio-ecological structures of the agricultural communities immigrants left to those they created on the other side of the Atlantic. It employs material and energy flow accounting (MEFA) methods to examine the social metabolic similarities and differences between Old World and New World farm systems at either end of the migration chain. Nine indicators reveal significant differences in land use strategy, labour deployment and the role of livestock. Whereas Old World farms had abundant human and animal labour but a shortage of land, Great Plains farms had excess land and a shortage of labour and livestock. Austrian farmers returned 90% of extracted nitrogen to cropland, sustaining soils over many generations, but they produced little marketable surplus. A key difference was livestock density. Old World communities kept more animals than needed for food and labour to supply manure that maintained cropland fertility. Great Plains farmers used few animals to exploit rich grassland soils, returning less than half of the nitrogen they extracted each year. Relying on a stockpiled endowment of nitrogen, they produced stupendous surpluses for market export, but watched crop yields decline between 1880 and 1940. Austrian immigrants to Kansas saw their return on labour increase 20-fold. Both farm systems were efficient in their own way, one producing long-term stability, the other remarkable commercial exports. Kansas farmers faced a soil nutrient crisis by the 1940s, one that they solved in the second half of the twentieth century by importing fossil fuels. Austrian and Great Plains agriculture converged thereafter, with dramatically increased productivity based on oil, diesel fuel, petroleum-based pesticides and synthetic nitrogen fertilisers manufactured from natural gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This study is supported by U.S. National Institute of Child Health and Human Development grant nos. HD044889 and HD033554. An earlier version of this text appeared as Cunfer and Krausmann (2009).

  2. 2.

    For details on the emigration from this region of the Austro-Hungarian Empire see Dujmovits (1992) and Antoni (1992).

  3. 3.

    For an early discussion of agro-ecology as a central subject for environmental history see Worster (1990).

  4. 4.

    For a detailed description see Krausmann (2004, 2008).

  5. 5.

    This material includes digitised versions of the original cadastral maps of the village, specific evaluations of parcel protocols (e.g., the quantification of the extent of external land use, land use data, and factor costs at the farm level). See Projektgruppe Umweltgeschichte (1997, 1999) and Winiwarter and Sonnlechner (2001).

  6. 6.

    Climate data come from two sources. The first is Karl, T.R., Williams, C.N. Jr., Quinlan, F.T., and Boden, T.A. (1990). United States Historical Climatology Network serial temperature and precipitation data. Environmental Science Division. Publication No. 3404. Oak Ridge, Tenn.; Carbon Dioxide Information and Analysis Center, Oak Ridge National Laboratory. The historical climatology data are stored as point data for weather stations at monthly intervals for 1,221 stations in the United States. The second source is National Climatic Data Center, Arizona State University, and Oak Ridge National Laboratory, Global Historical Climatology Network. This data set includes comprehensive monthly global surface baseline climate data. The Great Plains Population and Environment Project (www.icpsr.umich.edu/plains) interpolated data from 394 weather stations in the Great Plains to counties for each month between 1895 and 1993.

  7. 7.

    This version of the model focuses on biophysical relations between society and nature and thus reduces the socioeconomic system to its physical components, i.e. the population and the production subsystem. See Fischer-Kowalski and Weisz (1999).

  8. 8.

    See, for example, Schüle (1989).

  9. 9.

    Throughout the paper we define “agricultural area” as not only cultivated and intensively used land such as cropland, meadows or fruit gardens but also uncultivated prairie and woodlands. Uncultivated prairie in Kansas and woodlands in Theyern were integral components of both agricultural systems, as they were used for grazing or to extract bedding materials and also served as sources of biomass and plant nutrients transported to intensively used cropland (Cf. Krausmann 2004; Cunfer 2004).

  10. 10.

    One Giga Joule (GJ) corresponds to 109 J or 239 Mega calories (Mcal). Food output is measured in Joules of nutritional value according to standard nutrition tables.

  11. 11.

    We use “area productivity” and “labour productivity” in conformity with their usage in the long-term socio-ecological literature. Readers should be aware that economists have different definitions for these terms.

  12. 12.

    We converted livestock numbers into large animal units of 500 kg live weight by using species and region-specific data on average live weight in the observed period. See Krausmann (2004); 735–773 and Krausmann (2008), 56.

  13. 13.

    This estimate of nitrogen return to soils is only approximate. This analysis does not include a full soil nutrient balance. For one thing, it does not consider N losses due to volatilisation and leaching. Furthermore, a comprehensive assessment of soil fertility would need to include phosphorus, potassium, and organic matter, plus the structural properties of soils. Given the limitations of historical data, this paper focuses on those N inputs and extractions that farmers control most directly. For further details concerning the procedure used to estimate nitrogen flows see Krausmann (2004, 2008, 17–20) and Cunfer (2004). On soil nutrient balances more broadly, see Loomis (1978, 1984), Campbell and Overton (1991), Loomis and Connor (1992), and Shiel (2006a, b).

  14. 14.

    Farming Indians maintained soil fertility by swidden, moving their villages wholesale every 5–10 years when soil nutrients failed and crop yields declined. The most notable difference between New World and Old World agriculture was the presence of domesticated animals in the latter. Indian farmers had no domesticated livestock. Women tilled the soil entirely through human labour. Thus Indian agriculturalists never farmed the widespread uplands of the Great Plains. Both population densities and the area of arable land remained very low. See Hurt (1987, 57–64) and Wedel (1978).

  15. 15.

    The most common draft animals used in Theyern around 1830 were oxen. Only the larger farms kept horses, while in small holdings cows were also used for labour (working fields and fallow areas) and transport (moving harvest from dispersed fields), fuelwood from the community forests, and manure back to the fields. Krausmann (2004) estimates that installed power amounted to 0.17 kW per ha of cropland. According to Schaschl (2007), who quantified the monthly supply of and demand for human and animal labour during the course of a year for individual farms in Theyern, the supply of animal labour exceeded demand even during peak seasons in March and April. In Finley Township, horses were the only animals used to provide work until the first tractors appeared in the 1920s. According to our estimate, installed power per unit of cropland was similar to that in Theyern.

  16. 16.

    While the peaks in the rate of nitrogen return in Finley Township and at the Thir farm in the 1940s are due to harvest failures and consequent low nitrogen extraction rather than to increases in nitrogen input, leguminous crops contributed to the high return rate (above 50%) which can be observed for the George Thir farm in 1915. This was the only year when Thir planted a considerable fraction of his cropland with alfalfa.

  17. 17.

    For a discussion of risk minimisation strategies see McCloskey (1976).

References

  • Allen, R. C. (2008). The nitrogen hypothesis and the English agricultural revolution. A biological analysis. The Journal of Economic History, 68, 182–210.

    Article  CAS  Google Scholar 

  • Antoni, M. (1992). Nach Amerika… Materialien zur Landesausstellung in Güssing. Eisenstadt: Pädagogisches Institut des Bundes für Burgenland.

    Google Scholar 

  • Ayres, R. U., & Simonis, U. E. (1994). Industrial metabolism: Restructuring for sustainable development. Tokyo/New York/Paris: United Nations University Press.

    Google Scholar 

  • Boserup, E. (1965). The conditions of agricultural growth. The economics of agrarian change under population pressure. Chicago: Aldine/Earthscan.

    Google Scholar 

  • Boserup, E. (1981). Population and technological change – A study of long-term trends. Chicago: The University of Chicago Press.

    Google Scholar 

  • Burke, I. C., Lauenroth, W. K., Cunfer, G. A., Barrett, J., Mosier, A., & Lowe, P. (2002). Nitrogen in the Central Grasslands Region of the United States. BioScience, 52, 813–823.

    Article  Google Scholar 

  • Cadastral Schätzungs Elaborat der Steuergemeinde Theyern, held at Landesarchiv St. Pölten.

    Google Scholar 

  • Campbell, B. M. S., & Overton, M. (Eds.). (1991). Land, labour and livestock: Historical studies in European agricultural productivity. Manchester: Manchester University Press.

    Google Scholar 

  • Cunfer, G. A. (2004). Manure matters on the great plains frontier. The Journal of Interdisciplinary History, 34, 539–567.

    Article  Google Scholar 

  • Cunfer, G., & Krausmann, F. (2009). Sustaining soil fertility. Agricultural practice in the old and new worlds. Global Environment, 4, 8–47.

    Google Scholar 

  • Cusso, X., Garrabou, R., & Tello, E. (2006). Social metabolism in an agrarian region of Catalonia (Spain) in 1860 to 1870: Flows, energy balance and land use. Ecological Economics, 58, 49–65.

    Article  Google Scholar 

  • Decatur County Historical Book Committee. (1983). Decatur County, Kansas. Lubbock: Craftsman Printers, Inc.

    Google Scholar 

  • Dujmovits, W. (1992). Die Amerikawanderung der Burgenländer. Pinkafeld: Desch-Drechsler.

    Google Scholar 

  • Finanz-Ministerium, K. K. (Ed.). (1858). Tafeln zur Statistik des Steuerwesens im österreichischen Kaiserstaate mit besonderer Berücksichtigung der directen Steuern und des Grundsteuerkatasters. Wien.

    Google Scholar 

  • Fischer-Kowalski, M. (1998). Society’s metabolism. The intellectual history of material flow analysis, part I: 1860–1970. Journal of Industrial Ecology, 2, 61–78.

    Article  Google Scholar 

  • Fischer-Kowalski, M., & Haberl, H. (2007). Socioecological transitions and global change: Trajectories of social metabolism and land use. Cheltenham/Northhampton: Edward Elgar.

    Google Scholar 

  • Fischer-Kowalski, M., & Weisz, H. (1999). Society as a hybrid between material and symbolic realms. Toward a theoretical framework of society-nature interaction. Advances in Human Ecology, 8, 215–251.

    Google Scholar 

  • Frissel, M. J. (Ed.). (1978). Cycling of mineral nutrients in agricultural ecosystems. Amsterdam/Oxford/New York: Elsevier.

    Google Scholar 

  • Guzman Casado, G. I., & Gonzalez de Molina, M. (2009). Preindustrial agriculture versus organic agriculture: The land cost of sustainability. Land Use Policy, 26, 502–510.

    Article  Google Scholar 

  • Haberl, H., Winiwarter, V., Andersson, K., Ayres, R. U., Boone, C. G., Castillio, A., Cunfer, G., Fischer-Kowalski, M., Freudenburg, W. R., Furman, E., Kaufmann, R., Krausmann, F., Langthaler, E., Lotze-Campen, H., Mirtl, M., Redman, C. A., Reenberg, A., Wardell, A. D., Warr, B., & Zechmeister, H. (2006). From LTER to LTSER: Conceptualizing the socio-economic dimension of long-term socio-ecological research. Ecology and Society, 11, 13. (Online), www.ecologyandsociety.org/vol11/iss2/art13/

  • Hass, H. J., Evans, C. E., & Miles, E. F. (1957). Nitrogen and carbon changes in Great Plains soils as influenced by cropping and soil treatments. Washington, DC: GPO.

    Google Scholar 

  • Hayami, Y., & Ruttan, V. W. (1985). Agricultural development. An international perspective. Baltimore: John Hopkins University Press.

    Google Scholar 

  • Herndon Union Cemetery. Herndon Union Cemetery Records, Rawlins County, Kansas.

    Google Scholar 

  • Hurt, R. D. (1987). Indian agriculture in America: Prehistory to the present. Lawrence: University Press of Kansas.

    Google Scholar 

  • ICPSR. (2011). The Great Plains Population and Environment project. Inter-University Consortium for Political and Social Research. www.icpsr.umich.edu/plains. Accessed 28 June 2011.

  • Kansas GenWeb. (2009). Homestead records. http://skyways.lib.ks.us/genweb/decatur/Land%20Records/finley_homesteading.htm. Accessed 16 Feb 2009.

  • Kansas State Board of Agriculture. (1885, 1895, 1905, 1915, 1920, 1925, 1930, 1935, 1940). Population census manuscripts, Decatur County, Kansas.

    Google Scholar 

  • Karl, T. R., Williams, C. N. Jr., Quinlan, F. T., & Boden, T. A. (1990). United States Historical Climatology Network (HCN) serial temperature and precipitation data. No. 3404 (pp. 1–389). Oak Ridge: Carbon Dioxide Information and Analysis Center; Oak Ridge National Laboratory.

    Google Scholar 

  • Koning, N. (1994). The failure of agrarian capitalism: Agrarian politics in the U.K., Germany, Netherlands, and the U.S.A., 1846–1919. New York: Routledge.

    Book  Google Scholar 

  • Krausmann, F. (2004). Milk, manure and muscular power. Livestock and the industrialization of agriculture. Human Ecology, 32, 735–773.

    Article  Google Scholar 

  • Krausmann, F. (2008). Land use and socio-economic metabolism in pre-industrial agricultural systems: Four nineteenth-century Austrain villages in comparison (Social Ecology Working Paper, 72). Vienna: IFF Social Ecology.

    Google Scholar 

  • Lego, K. (1968). Geschichte des österreichischen Grundkatasters. Wien: Bundesamt für Eich- und Vermessungswesen.

    Google Scholar 

  • Liu, J. G., Dietz, T., Carpenter, S. R., Folke, C., Alberti, M., Redman, C. L., Schneider, S. H., Ostrom, E., Pell, A. N., Lubchenco, J., Taylor, W. W., Ouyang, Z. Y., Deadman, P., Kratz, T., & Provencher, W. (2007). Coupled human and natural systems. Ambio, 36, 639–649.

    Article  Google Scholar 

  • Loomis, R. S. (1978). Ecological Dimensions of Medieval Agrarian Systems. An Ecologist Responds. Agricultural History, 52, 478–484.

    Google Scholar 

  • Loomis, R. S. (1984). Traditional agriculture in America. Annual Review of Ecology and Systematics, 15, 449–478.

    Article  Google Scholar 

  • Loomis, R. S., & Connor, D. J. (1992). Crop ecology: Productivity and management in agricultural systems. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Marull, J., Pino, J., & Tello, E. (2008). The loss of landscape efficiency: An ecological analysis of land use changes in western Mediterranean agriculture (Valles County, Catalonia, 1853–2004). Global Environment, 2, 112–150.

    Google Scholar 

  • McCloskey, D. (2001). English open fields as behavior toward risk. In Deirdre N. McCloskey and Stephen Ziliak (Eds.), Measurement and meaning in economics: The essential Dierdre McCloskey (pp. 17–63). Cheltenham: E. Elgar.

    Google Scholar 

  • Moritsch, A. (1972). Der Franziszeische Grundsteuerkataster Quelle für die Wirtschaftsgeschichte und historische Volkskunde. East European Quarterly, 3, 438–448.

    Google Scholar 

  • Parton, W. J., Gutmann, M. P., Williams, S. A., Easter, M., & Ojima, D. (2005). Ecological impact of historical land-use patterns in the Great Plains: A methodological assessment. Ecological Applications, 15, 1915–1928.

    Article  Google Scholar 

  • Persson, K. G. (1999). Grain markets in Europe, 1500–1900: Integration and deregulation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Prickler, L. (2003). Ebene im Osten: Der Seewinkel im Bezirk Neusiedl am See. In E. Bruckmüller, E. Hanisch, & R. Sandgruber (Eds.), Geschichte der österreichischen Land- und Forstwirtschaft im 20. Jahrhundert. Regionen, Betriebe, Menschen (pp. 741–794). Wien: Ueberreuter.

    Google Scholar 

  • Projektgruppe Umweltgeschichte. (1997). Historische und ökologische Prozesse in einer Kulturlandschaft. Studie im Auftrag des BMWVK, Endbericht. Wien.

    Google Scholar 

  • Projektgruppe Umweltgeschichte. (1999). Kulturlandschaftsforschung: Historische Entwicklung von Wechselwirkungen zwischen Gesellschaft und Natur. Wien: CD-ROM, Bundesministerium für Wissenschaft und Verkehr.

    Google Scholar 

  • Sandgruber, R. (1978). Die Agrarrevolution in Österreich. Ertragssteigerung und Kommerzialisierung der landwirtschaftlichen Produktion im 18. und 19. Jahrhundert. In A. Hoffmann (Ed.), Österreich-Ungarn als Agrarstaat. Wirtschaftliches Wachstum und Agrarverhältnisse in Österreich im 19. Jahrhundert (pp. 195–271). Wien: Verlag für Geschichte und Politik.

    Google Scholar 

  • Sandgruber, R. (1979). Der Franziszeische Kataster und die dazugehörigen Steuerschätzungsoperate als wirtschafts- und sozialhistorische Quellen. Mitteilungen aus dem niederösterreichischen Landesarchiv, 3, 16–28.

    Google Scholar 

  • Schaschl, E. (2007). Rekonstruktion der Arbeitszeit in der Landwirtschaft im 19. Jahrhundert am Beispiel von Theyern in Niederösterreich (Social Ecology Working Paper, 96, pp. 1–174). Vienna: IFF Soziale Ökologie.

    Google Scholar 

  • Schüle, H. (1989). Raum-zeitliche Modelle – ein neuer methodischer Ansatz in der Agrargeschichte. Das Beispiel der bernischen Viehwirtschaft als Träger und Indikator der Agrarmodernisierung 1790 – 1915. Bern: Lizensiatsarbeit, historisches Institut der Universität Bern.

    Google Scholar 

  • Shiel, R. (2006a). An introduction to soil nutrient flows. In J. R. McNeill & V. Winiwarter (Eds.), Soils and societies: Perspectives from environmental history (pp. 7–12). Isle of Harris: White Horse Press.

    Google Scholar 

  • Shiel, R. (2006b). Nutrient flows in pre-modern agriculture in Europe. In J. R. McNeill & V. Winiwarter (Eds.), Soils and societies: Perspectives from environmental history (pp. 216–242). Isle of Harris: White Horse Press.

    Google Scholar 

  • Sieferle, R. P., Krausmann, F., Schandl, H., & Winiwarter, V. (2006). Das Ende der Fläche. Zum gesellschaftlichen Stoffwechsel der Industrialisierung. Köln: Böhlau.

    Google Scholar 

  • Sonnlechner, C. (2001). Umweltgeschichte und Siedlungsgeschichte. Das Waldviertel. Zeitschrift für Heimat- und Regionalkunde des Waldviertels und der Wachau, 50, 361–382.

    Google Scholar 

  • Standard Atlas of Decatur County, Kansas. (1905). Chicago: George A. Ogle & Co.

    Google Scholar 

  • Stevenson, F. J. (Ed.). (1982). Nitrogen in agricultural soils (Agronomy Series No. 22). Madison: American Society of Agronomy, Crop Science Society of American, and Soil Science Society of America.

    Google Scholar 

  • Sylvester, K. M., Leonard, S. H., Gutmann, M. P., & Cunfer, G. (2006). Demography and environment in grassland settlement: Using linked longitudinal and cross-sectional data to explore household and agricultural systems. History and Computing, 14, 31–60.

    Article  Google Scholar 

  • U.S. Population Census. (1880, 1900, 1910, 1920, 1930). U.S. Population Census manuscript schedules, Decatur County, Kansas.

    Google Scholar 

  • Van Zanden, J. L. (1991). The first green revolution: The growth of production and productivity in European agriculture, 1870–1914. The Economic History Review, 44, 215–239.

    Google Scholar 

  • Wedel, W. R. (1978). The prehistoric plains. In J. D. Jennings (Ed.), Ancient Native Americans. San Francisco: W.H. Freeman and Company.

    Google Scholar 

  • Williamson, J. G. (2006). Globalization and the poor periphery before 1950. Cambridge: MIT Press.

    Google Scholar 

  • Winiwarter, V., & Sonnlechner, C. (2001). Der soziale Metabolismus der vorindustriellen Landwirtschaft in Europa. Stuttgart: Breuninger Stiftung.

    Google Scholar 

  • Worster, D. (1990). Transformations of the earth: Toward an agroecological perspective in history. The Journal of American History, 76, 1087–1106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoff Cunfer Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cunfer, G., Krausmann, F. (2013). Sustaining Agricultural Systems in the Old and New Worlds: A Long-Term Socio-Ecological Comparison. In: Singh, S., Haberl, H., Chertow, M., Mirtl, M., Schmid, M. (eds) Long Term Socio-Ecological Research. Human-Environment Interactions, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1177-8_12

Download citation

Publish with us

Policies and ethics