Skip to main content

A City and Its Hinterland: Vienna’s Energy Metabolism 1800–2006

  • Chapter
  • First Online:
Long Term Socio-Ecological Research

Part of the book series: Human-Environment Interactions ((HUEN,volume 2))

Abstract

Cities are centres of resource consumption and urban resource use has a considerable influence on both the economy and the environment in the resource-providing hinterland. This chapter looks at cities from a socio-ecological perspective and investigates the evolution of the energy metabolism of the city of Vienna since the beginning of industrialisation. Based on time series data on the size and structure of energy consumption in Vienna in the period from 1800 to 2006, it analyses the energy transition and how it relates to urban growth. It shows that during the last 200 years, a multiplication of energy use and a shift from renewable biomass towards coal and finally oil and natural gas as the dominating energy source have been observed. This energy transition was not a continuous process, but different phases in the energy transition can be distinguished. Also the spatial relations between the city and its resource-supplying hinterland changed. But growth in urban resource use was not simply causing an equal growth of the spatial imprint of urban consumption. Our results show that the size and spatial location of the resource-supplying hinterland is the combined result of various dynamic processes, including transport technology and agricultural productivity.

The paper shows how energy and transport revolution abolished barriers of growth inherent to the old energy regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter, the notion of ‘hinterland’ is understood in a broader sense and is not restricted to the immediate rural, comparatively infrastructure-poor areas surrounding urban centres. Instead, from a socio-ecological perspective, the urban hinterland encompasses the full extent of regions supplying the urban centre with natural resources (cf. Jones 1955; Fischer-Kowalski et al. 1997). In an abstract sense, hinterland is understood as the environmental space or ecological footprint required to sustain the city with material and energy. From this perspective, the extent of the hinterland and the intensity of the relation between centre and hinterland changes over time. During industrialisation, the direct spatial relation between a city and its hinterland has increasingly vanished as the hinterland of the modern industrial city spreads across the globe (Mumford 1956).

  2. 2.

    In energy accounting, this problem is sometimes overcome by calculating primary energy equivalents of imported final energy (e.g. coal required to produce imported electricity). This procedure has not been applied for this chapter.

  3. 3.

    The most significant annual statistical publications are: Tafeln zur Statistik (1828–1865); Statistisches Jahrbuch der Stadt Wien (SJB, 1883-today); Ergebnisse der Verzehrungssteuer im Verwaltungsjahr (1860–1891); Statistische Ausweise über die Preise der Lebensmittel und der Approvisionierung in Wien (1879ff). See Sandgruber (1978 and 1986) and Hauer (2010) for a more detailed discussion of available sources.

  4. 4.

    The reasons for these fluctuations are not fully clear. They partly reflect actual ups and downs in energy consumption (due to e.g. fluctuations in winter temperatures) but they might be partly a result of the peculiarities of the compilation of energy statistics (in particular transport fuel) for urban systems.

  5. 5.

    A large fraction of the energy used in Vienna (as in many other cities) is imported as final energy ready for consumption (e.g. food, fuels, gas for heating, electricity). In practical terms, the energy consumption (DEC) calculated for Vienna is closer to final energy use than to primary energy supply – and for this reason Austrian final energy consumption is used as a reference measure.

  6. 6.

    Feed for draught animals for urban transport is most likely underestimated, as this estimate only includes draught animals reported within the city limits. These numbers seem to be rather low. A significant share of transport services may have been provided by carrying trade located outside the city.

  7. 7.

    The northern and southern railway stations were opened in the late 1830s. It took several decades, however, until Vienna was fully connected to the industrial centres of Moravia, Bohemia, Silesia and Prussia in the north (1848) and Styria and the Adriatic harbour of Trieste (1859) in the south.

  8. 8.

    According to Braudel (in Sieferle et al. 2006), transport costs on horse carriages are by a factor 9 higher than those on natural water ways. Sandgruber (1987) quotes figures for transport costs of fuelwood in 1855 that indicate that transportation on horse carriages is by a factor 10–20 more costly than transport on the Danube per unit of area.

  9. 9.

    The area density of transportation systems changes dramatically with technology: Typical natural and artificial waterways under optimum conditions may reach 10–15 m/km2, railroad systems 80–100 m/km2, and modern road systems up to 2,000 m/km2 (Central European averages, author’s own calculations).

  10. 10.

    The following calculations only refer to major domestic staple foods (e.g. cereals, potatoes, vegetables, meat, and dairy products). The inclusion of areas for special cultivars, such as tea, coffee, tropical fruits, olive oil etc., may have a significant impact on the outcome and increase in particular the food footprint for the contemporary period (see Erb et al. 2001).

  11. 11.

    Calculated as the net output of plant and animal based food per total agricultural area.

References

  • Ayres, R. U., & Ayres, L. W. (1998). Accounting for resources, 1, economy-wide applications of mass-balance principles to materials and waste. Cheltenham/Lyme: Edward Elgar.

    Google Scholar 

  • Barles, S. (2005). A metabolic approach to the city: Nineteenth and twentieth century Paris. In D. Schott, B. Luckin, & G. Massard-Guilbaud (Eds.), Resources of the city. Contributions to an environmental history of modern Europe (pp. 28–47). Aldershot: Ashgate.

    Google Scholar 

  • Barles, S. (2007). Feeding the city: Food consumption and flow of nitrogen, Paris, 1801–1914. The Science of the Total Environment, 375, 48–58.

    Article  CAS  Google Scholar 

  • Barles, S. (2009). Urban metabolism of Paris and its region. Journal of Industrial Ecology, 13, 898–913.

    Article  Google Scholar 

  • Billen, G., Barles, S., Garnier, J., Rouillard, J., & Benoit, P. (2009). The food-print of Paris: Long-term reconstruction of the nitrogen flows imported into the city from its rural hinterland. Regional Environmental Change, 9, 13–24.

    Article  Google Scholar 

  • Billen, G., Garnier, J., Barles, S. (2012). History of the urban environmental imprint: introduction to a multidisciplinary approach to the long-term relationships between Western cities and their hinterland. Regional Environmental Change, 12, 249–253.

    Google Scholar 

  • BMLF – Bundesministerium für Land- und Forstwirtschaft. (1997). Lebensmittelbericht Österreich. Vienna: BMLF.

    Google Scholar 

  • Boyden, S., Millar, S., Newcombe, K., & O’Neill, B. J. (1981). The ecology of a city and its people: The case of Hong Kong. Canberra: ANU Press.

    Google Scholar 

  • Buchmann, B. M. (1979). Die Verzehrungssteuer. Wiener Geschichtsblätter, 1979(1), 20–29.

    Google Scholar 

  • Castaldi, C., & Nuvolari, A. (2003). Technological revolutions and economic growth: The “age of steam” reconsidered (Eindhoven Centre for Innovation Studies Working Paper 03.25). Eindhoven: Eindhoven Centre for Innovation Studies.

    Google Scholar 

  • Daniels, P. L., & Moore, S. (2001). Approaches for quantifying the metabolism of physical economies, part I: Methodological overview. Journal of Industrial Ecology, 5, 69–93.

    Article  Google Scholar 

  • Daxbeck, H., Kisliakova, A., & Obernosterer, R. (2001). Der ökologische Fußabdruck der Stadt Wien. Vienna: Magistrat der Stadt Wien (MA22).

    Google Scholar 

  • Eigner, P., & Schneider, P. (2005). Das Wachstum von Wien. In K. Brunner & P. Schneider (Eds.), Umwelt Wien. Geschichte des Natur- und Lebensraumes Wien (pp. 22–53). Vienna: Böhlau.

    Google Scholar 

  • Erb, K.-H., Krausmann, F., & Schulz, N. B. (2001) Der ökologische Fußabdruck des österreichischen Außenhandels (Social Ecology Working Paper 62). Vienna: IFF Social Ecology.

    Google Scholar 

  • Fischer-Kowalski, M., Haberl, H., Hüttler, W., Payer, H., Schandl, H., Winiwarter, V., & Zangerl-Weisz, H. (1997). Gesellschaftlicher Stoffwechsel und Kolonisierung von Natur. Ein Versuch in Sozialer Ökologie. Amsterdam: Gordon & Breach Fakultas.

    Google Scholar 

  • Fischer-Kowalski, M., Krausmann, F., & Smetschka, B. (2004). Modelling scenarios of transport across history from a socio-metabolic perspective. Review Fernand Braudel Center, 27, 307–342.

    Google Scholar 

  • Folke, C., Jansson, A., Larsson, J., & Costanza, R. (1997). Ecosystem appropriation by cities. Ambio, 26, 167–172.

    Google Scholar 

  • Gingrich, S., Haidvogl, G., & Krausmann, F. (2012). The Danube and Vienna: Urban resource use, transport and land use 1800 to 1910. Regional Environmental Change, 12, 283–294. doi:10.1007/s10113-010-0201.

  • Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J. G., Bai, X. M., & Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319, 756–760.

    Article  CAS  Google Scholar 

  • Grübler, A. (2004). Transitions in energy use. In C. J. Cleveland (Ed.), Encyclopedia of energy (pp. 163–177). Amsterdam: Elsevier.

    Google Scholar 

  • Haberl, H. (2001). The energetic metabolism of societies, part I: Accounting concepts. Journal of Industrial Ecology, 5, 11–33.

    Article  Google Scholar 

  • Haberl, H., Erb, K.-H., & Krausmann, F. (2001). How to calculate and interpret ecological footprints for long periods of time: The case of Austria 1926–1995. Ecological Economics, 38, 25–45.

    Article  Google Scholar 

  • Handels- und Gewerbekammer in Wien (Ed.). (1867). Statistik der Volkswirtschaft in Nieder-Oesterreich 1855–1866. Vienna: Leopold Sommer.

    Google Scholar 

  • Hauer, F. (2010). Die Verzehrungssteuer 1829–1913 als Grundlage einer umwelthistorischen Untersuchung des Metabolismus der Stadt Wien (Social Ecology Working Paper 129). Vienna: IFF Social Ecology.

    Google Scholar 

  • Hoffmann, R. C. (2007). Footprint metaphor and metabolic realities. Environmental impacts of medieval European cities. In P. Squatriti (Ed.), Natures past. The environment and human history (pp. 288–325). Ann Arbor: The University of Michigan Press.

    Google Scholar 

  • Johann, E. (2005). Die städtische Holzversorgung vom 17. bis zum 19. Jahrhundert. In K. Brunner & P. Schneider (Eds.), Umwelt Wien. Geschichte des Natur- und Lebensraumes Wien (pp. 170–179). Vienna: Böhlau.

    Google Scholar 

  • Jones, L. W. (1955). The hinterland reconsidered. American Sociological Review, 20, 40–44.

    Article  Google Scholar 

  • Juraschek, F. (1896). Das Wachsthum des Territoriums, der Bevölkerung und des Verkehers von Wien 1857–1894. Statistische Monatsschrift, 22, 328–344.

    Google Scholar 

  • Kennedy, C. A., Cuddihy, J., & Engel-Yan, J. (2007). The changing metabolism of cities. Journal of Industrial Ecology, 11, 1–17.

    Article  Google Scholar 

  • Krausmann, F. (2004). Milk, manure and muscular power. Livestock and the industrialization of agriculture. Human Ecology, 32, 735–773.

    Article  Google Scholar 

  • Krausmann, F., & Haberl, H. (2007). Land-use change and socio-economic metabolism. A macro view of Austria 1830–2000. In M. Fischer-Kowalski & H. Haberl (Eds.), Socioecological transitions and global change: Trajectories of social metabolism and land use (pp. 31–59). Cheltenham/Northampton: Edward Elgar.

    Google Scholar 

  • Loomis, R. S., & Connor, D. J. (1992). Crop ecology: Productivity and management in agricultural systems. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lorenz von Liburnau, J. R. (1878). Atlas der Urproduction Oesterreichs. Vienna: R. von Waldheim.

    Google Scholar 

  • Luck, M. A., Jenerette, G. D., Wu, J., & Grimm, N. B. (2001). The urban funnel model and the spatially heterogeneous ecological footprint. Ecosystems, 4, 782–796.

    Article  Google Scholar 

  • Marull, J., Pino, J., Tello, E., & Cordobilla, M. J. (2010). Social metabolism, landscape change and land-use planning in the Barcelona metropolitan region. Land Use Policy, 27, 497–510.

    Article  Google Scholar 

  • Mühlpeck, V., Sandgruber, R., & Woitek, H. (1979). Index der Verbraucherpreise 1800 bis 1914. Eine Rückberechnung für Wien und den Gebietsstand des heutigen Österreich. In Anonymous (Ed.), Geschichte und Ergebnisse der zentralen amtlichen Statistik in Österreich 1829–1979 (pp. 649–687). Vienna: Kommissionsverlag.

    Google Scholar 

  • Mumford, L. (1956). The natural history of urbanization. In W. L. Thomas Jr. (Ed.), Man’s role in changing the face of the Earth (pp. 382–398). Chicago: The University of Chicago Press.

    Google Scholar 

  • Nagl, H. (1966). Die Energiewirtschaft Wiens. Dissertation, University of Vienna, Vienna.

    Google Scholar 

  • Niza, S., Rosado, L., & Ferrao, P. (2009). Urban metabolism: Methodological advances in urban material flow accounting based on the Lisbon case study. Journal of Industrial Ecology, 13, 384–405.

    Article  Google Scholar 

  • Peterson, B. (2005). Die Lebensmittelversorgung der Stadt. In K. Brunner & P. Schneider (Eds.), Umwelt Wien. Geschichte des Natur- und Lebensraumes Wien (pp. 207–221). Vienna: Böhlau.

    Google Scholar 

  • Pfister, C. (1996). Das 1950er Syndrom: Der Weg in die Konsumgesellschaft. Bern/Vienna: Haupt.

    Google Scholar 

  • Pfister, C. (2003). Energiepreis und Umweltbelastung. Zum Stand der Diskussion über das “1950er Syndrom”. In W. Siemann (Ed.), Umweltgeschichte Themen und Perspektiven (pp. 61–86). Munich: C.H. Beck.

    Google Scholar 

  • Pizzala, J. (1884). Der Brennstoffverbrauch Wiens in den Jahren 1860 bis 1882. Statistische Monatsschrift, 10, 323–326.

    Google Scholar 

  • Radkau, J. (1989). Technik in Deutschland. Vom 18. Jahrhundert bis zur Gegenwart. Frankfurt am Main: Edition Suhrkamp.

    Google Scholar 

  • Sahely, H. R., Dudding, S., & Kennedy, C. A. (2003). Estimating the urban metabolism of Canadian cities: Greater Toronto Area case study. Canadian Journal for Civil Engineering, 30, 468–483.

    Article  CAS  Google Scholar 

  • Sandgruber, R. (1978). Wirtschaftswachstum und Energie in Österreich 1840–1913. In H. Kellenbenz (Ed.), Wirtschaftswachstum, Energie und Verkehr vom Mittelalter bis ins 19. Jahrhundert (pp. 67–95). Stuttgart/New York: Fischer Verlag.

    Google Scholar 

  • Sandgruber, R. (1983). Wiens Energieverbrauch und Energieversorgung in der Phase der Industrialisierung. Vienna: Magistrat der Stadt Wien.

    Google Scholar 

  • Sandgruber, R. (1987). Die Energieversorgung Wiens im 18. und 19. Jahrhundert. In A. Kusternig (Ed.), Bergbau in Niederösterreich (pp. 459–491). Vienna: NÖ Institut für Landeskunde.

    Google Scholar 

  • Satterthwaite, D. (2009). The implications of population growth and urbanization for climate change. Environment and Urbanization, 21, 545–567.

    Article  Google Scholar 

  • Schmid-Neset, T.-S., & Lohm, U. (2005). Spatial imprint of food consumption. A historical analysis for Sweden, 1870–2000. Human Ecology, 33, 565–580.

    Article  Google Scholar 

  • Sieferle, R. P. (2001). The subterranean forest. Energy systems and the industrial revolution. Cambridge: The White Horse Press.

    Google Scholar 

  • Sieferle, R. P., Krausmann, F., Schandl, H., & Winiwarter, V. (2006). Das Ende der Fläche. Zum gesellschaftlichen Stoffwechsel der Industrialisierung. Köln: Böhlau.

    Google Scholar 

  • Statistik Austria. (2008). Online database ISIS of Statistik Austria. www.statistik.at

  • Stenitzer, M., Fickl, S., Papousek, B., & Cerveny, M. (1997). Energieeinsatz und CO 2 -Emissionen in Wien. Vienna: Magistrat der Stadt Wien, MA 22.

    Google Scholar 

  • Tarr, J. A. (2002). The metabolism of the industrial city. The case of Pittsburgh. Journal of Urban History, 28, 511–545.

    Article  Google Scholar 

  • Thünen, J. Hv. (1826). Der isolierte Staat in Beziehung auf Landwirtschaft und Nationalökonomie. Jena: Fischer.

    Google Scholar 

  • Wackernagel, M., Monfreda, C., Schulz, N. B., Erb, K.-H., Haberl, H., & Krausmann, F. (2004). Calculating national and global ecological footprint time series: Resolving conceptual challenges. Land Use Policy, 21, 271–278.

    Article  Google Scholar 

  • Warren-Rhodes, K., & Koenig, A. (2001). Escalating trends in the urban metabolism of Hong Kong: 1971–1997. Ambio, 30, 429–438.

    CAS  Google Scholar 

  • Weisz, H., & Steinberger, J. K. (2010). Reducing energy and materials flows in cities. Current Opinion in Environmental Sustainability, 2, 185–192.

    Article  Google Scholar 

  • Wessely, J. (1880). Forstliches Jahrbuch für Oesterreich-Ungarn. Vienna: Carl Fromme.

    Google Scholar 

  • Wessely, J. (1882). Forstliches Jahrbuch für Oesterreich – Ungarn. Oesterreichs Donauländer. II. Theil: Spezial-Gemälde der Donauländer. Vienna: Carl Fromme.

    Google Scholar 

  • Wien. Magistrat der Stadt Wien (MSW). (1885). Statistisches Jahrbuch der Stadt Wien (various years 1885 to 2008).

    Google Scholar 

  • Wien. Magistrat der Stadt Wien (MSW). (2002). Statistisches Jahrbuch der Stadt Wien für das Jahr 2000.

    Google Scholar 

  • Wien. Magistrat der Stadt Wien (MSW). (2008). Statistisches Jahrbuch der Stadt Wien für das Jahr 2006.

    Google Scholar 

  • Wiener Stadtwerke. (1975). Energiekonzept der Stadt Wien. Vienna: Wiener Stadtwerke Generaldirektion.

    Google Scholar 

  • Wiener Stadtwerke. (1978). Energiekonzept der Stadt Wien. Vienna: Wiener Stadtwerke Generaldirektion.

    Google Scholar 

  • Wiener Stadtwerke. (1983). Energie für Wien. Energiekonzept der Stadt Wien. 1. Fortschreibung. Vienna: Wiener Stadtwerke.

    Google Scholar 

  • Wiener Stadtwerke. (1994). Energie in Wien. Wien: Wiener Stadtwerke.

    Google Scholar 

Download references

Acknowledgments

The research for this paper was supported by the Austrian Science Fund (Project No. P21012 G11). I want to thank Rolf Peter Sieferle, Verena Winiwarter, Marina Fischer-Kowalski and Simone Gingrich for their support of this research and Marian Chertow and Helmut Haberl for a critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fridolin Krausmann Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krausmann, F. (2013). A City and Its Hinterland: Vienna’s Energy Metabolism 1800–2006. In: Singh, S., Haberl, H., Chertow, M., Mirtl, M., Schmid, M. (eds) Long Term Socio-Ecological Research. Human-Environment Interactions, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1177-8_11

Download citation

Publish with us

Policies and ethics