Skip to main content

Nanotechnology for Sustainability: Energy Conversion, Storage, and Conservation

  • Chapter
  • First Online:
Nanotechnology Research Directions for Societal Needs in 2020

Part of the book series: Science Policy Reports ((SCIPOLICY,volume 1))

Abstract

Increasing standards of living and rising population numbers are leading to inevitable increases in global energy consumption. Worldwide energy usage is on track to increase by roughly 40% in the next 20 years (Fig. 1) and to nearly double by 2050. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO2 emissions in the atmosphere demands that holding atmospheric CO2 levels to even twice their pre-anthropogenic values by midcentury will require invention, development, and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined [1, 2]. In addition to the negative climate impacts associated with burning fossil fuel, significant worldwide competition for these limited resources, and increases in the prices of energy-intensive commodities like fertilizer, are likely to have significant geo­political and social consequences, making energy an issue of national security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This goal was part of the president’s campaign agenda, e.g., see http://change.gov/agenda/energy_and_environment_agenda/.

References

  1. N.S. Lewis, Toward cost-effective solar energy use. Science 315(5813), 798–801 (2007)

    Article  CAS  Google Scholar 

  2. N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U.S.A. 103(43), 15729–15735 (2006)

    Article  CAS  Google Scholar 

  3. Business Wire, Solarmer Energy, Inc. breaks psychological barrier with 8.13% OPV efficiency (2010), Available online: http://www.businesswire.com/news/home/20100727005484/en/Solarmer-Energy-Breaks-Psychological-Barrier-8.13-OPV. 27 July 2010

  4. Y. Liang, Z. Xu, J. Xial, S.T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, For the bright future – bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, 1–4 (2010). doi:10.1002/adma.200903528

    Article  Google Scholar 

  5. P. Heremans, D. Cheyns, B.P. Rand, Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Acc. Chem. Res. 42(11), 1740–1747 (2009)

    Article  CAS  Google Scholar 

  6. M.A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, Berlin, 2004)

    Google Scholar 

  7. U.S. Department of Energy Office of Basic Energy Sciences (DOE/BES), Basic research needs for solar energy utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, 18–21 April 2004 (U.S. Department of Energy Office of Basic Energy Sciences, Washington, DC, 2005), Available online: http://www.sc.doe.gov/bes/reports/files/SEU_rpt.pdf

  8. D. Gust, T.A. Moore, A.L. Moore, Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42(12), 1890–1898 (2009)

    Article  CAS  Google Scholar 

  9. X. Ji, T.L. Kyu, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009)

    Article  CAS  Google Scholar 

  10. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). doi:10.1038/nnano.2007.411

    Article  CAS  Google Scholar 

  11. C. Xu, F. Kang, B. Li, H. Du, Recent progress on manganese dioxide supercapacitors. J. Mater. Res. 25(8), 1421–1432 (2010). doi:10.1557/JMR.2010.0211

    Article  CAS  Google Scholar 

  12. L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)

    Article  CAS  Google Scholar 

  13. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997)

    Article  CAS  Google Scholar 

  14. C. Liu, Y. Chen, C.-Z. Wu, S.-T. Xu, H.-M. Cheng, Hydrogen storage in carbon nanotubes revisited. Carbon 48, 452–455 (2010)

    Article  CAS  Google Scholar 

  15. O.B. Shchekin, J.E. Epler, T.A. Trottier, D.A. Margalith, High performance thin-film flip-chip InGaN–GaN light-emitting diodes. Appl. Phys. Lett. 89, 071109 (2006)

    Article  Google Scholar 

  16. C. Wadia, A.P. Alivisatos, D.M. Kammen, Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43(6), 2072–2077 (2009)

    Article  CAS  Google Scholar 

  17. U.S. Department of Energy Office of Basic Energy Sciences (DOE/BES), Basic Research Needs for Solid-State Lighting. Report of the Basic Energy Sciences Workshop on Solid-State Lighting 22–24 May 2006 (U.S. Department of Energy Office of Basic Energy Sciences, Washington, DC, 2006), Available online: http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf

  18. A. Majumdar, Materials science: enhanced thermoelectricity in semiconductor nanostructures. Science 303(5659), 777–778 (2004)

    Article  CAS  Google Scholar 

  19. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2(5), 466–479 (2009)

    Article  CAS  Google Scholar 

  20. A. Balandin, K.L. Wang, Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J. Appl. Phys. 84(11), 6149–6153 (1998)

    Article  CAS  Google Scholar 

  21. G. Chen, Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57(23), 14958 (1998)

    Article  CAS  Google Scholar 

  22. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Quantum dot superlattice thermoelectric materials and devices. Science 297(5590), 2229–2232 (2002)

    Article  CAS  Google Scholar 

  23. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856), 597–602 (2001)

    Article  CAS  Google Scholar 

  24. Y.K. Koh, C.J. Vineis, S.D. Calawa, M.P. Walsh, D.G. Cahill, Lattice thermal conductivity of nanostructured thermoelectric materials based on PbTe. Appl. Phys. Lett. 94(15), 153101–153103 (2009)

    Article  Google Scholar 

  25. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Recent developments in thermoelectric materials. Int. Mater. Rev. 48, 45–66 (2003)

    Article  CAS  Google Scholar 

  26. H.-K. Lyeo, A.A. Khajetoorians, L. Shi, K.P. Pipe, R.J. Ram, A. Shakouri, C.K. Shih, Profiling the thermoelectric power of semiconductor junctions with nanometer resolution. Science 303(5659), 816–818 (2004). doi:10.1126/science.1091600

    Article  CAS  Google Scholar 

  27. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (DOE/EEaR), Solar energy technologies program: Multi-Year Program Plan 2007–2011, 2006 (DOE) (2006), Available online: http://www1.eere.energy.gov/solar/pdfs/set_myp_2007-2011_proof_2.pdf

  28. J. Fricke, A. Emmerling, Aerogels. J. Am. Ceram. Soc. 75(8), 2027–2036 (1992). Available online: http://eetd.lbl.gov/ECS/Aerogels/sa-thermal.html

    Article  CAS  Google Scholar 

  29. R. Deshpande, D.W. Hua, D.M. Smith, C.J. Brinker, Pore structure evolution in silica-gel during aging drying. 3. Effects of surface-tension. J. Non. Cryst. Solids 144(1), 32–44 (1992)

    Article  CAS  Google Scholar 

  30. S.S. Prakash, C.J. Brinker, A.J. Hurd, S.M. Rao, Silica aerogel films prepared at ambient-pressure by using surface derivatization to induce reversible drying shrinkage. Nature 374(6521), 439–443 (1995)

    Article  CAS  Google Scholar 

  31. R. Baetens, B.P. Jelle, J.V. Thue, M.J. Tenpierik, S. Grynning, S. Uvsløkk, A. Gustavsen, Vacuum insulation panels for building applications: a review and beyond. Energy Build 42, 147–172 (2010)

    Article  Google Scholar 

  32. A. Jaeger-Waldau, PV Status Report 2009: research, solar cell production, and market implementation of photovoltaics (European Commission Joint Research Centre Institute for Energy, Ispra, 2009), Available online: http://re.jrc.ec.europa.eu/refsys/pdf/PV-Report2009.pdf

  33. N.R. Council, Electricity from Renewable Resources: Status, Prospects, and Impediments (National Academy of Sciences, Washington, DC, 2010)

    Google Scholar 

  34. J. Johnson, Fossil fuel costs. Chem. Eng. News 87(43), 6 (2009)

    Article  Google Scholar 

  35. J. Hader, J.V. Moloney, B. Pasenow, S.W. Koch, M. Sabathil, N. Linder, S. Lutgen, On the importance of radiative and Auger losses in GaN-based quantum wells. Appl. Phys. Lett. 92, 261103 (2008). doi:10.1063/1.2953543

    Article  Google Scholar 

  36. M.G. Kanatzidis, Nanostructured thermoelectrics: the new paradigm? Chem. Mater. 22(3), 648–659 (2009)

    Article  Google Scholar 

  37. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320(5876), 634–638 (2008). doi:10.1126/science.1156446

    Article  CAS  Google Scholar 

  38. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303(5659), 818–821 (2004). doi:10.1126/science.1092963

    Article  CAS  Google Scholar 

  39. Business Wire, To cap off a magnificent year, Solarmer achieves 7.9% NREL Certified Plastic Solar Cell Efficiency (2009), Available online: http://www.businesswire.com/news/home/20091201005430/en/Cap-Magnificient-Year-Solarmer-Achieves-7.9-NREL

  40. R. Gaudiana, Third-generation photovoltaic technology – the potential for low-cost solar energy conversion. J. Phys. Chem. Lett. 1(7), 1288–1289 (2010). doi:10.1021/jz100290q

    Article  CAS  Google Scholar 

  41. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor hetrojunctions. Science 270, 1789–1791 (1995)

    Article  CAS  Google Scholar 

  42. G. Li, V. Shrotriya, J.S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005). doi:10.1038/nmat1500

    Article  CAS  Google Scholar 

  43. S.H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3(5), 297–302 (2009)

    Article  CAS  Google Scholar 

  44. G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21(13), 1323–1338 (2009). doi:10.1002/adma.200801283

    Article  CAS  Google Scholar 

  45. R. Giridharagopal, D.S. Ginger, Characterizing morphology in bulk heterojunction organic photovoltaic systems. J. Chem. Phys. Lett. 1(7), 1160–1169 (2010)

    Article  CAS  Google Scholar 

  46. E.J.W. Crossland, M. Kamperman, M. Nedelcu, C. Ducati, U. Wiesner, D.-M. Smilgies, G.E.S. Toombes, M.A. Hillmyer, S. Ludwigs, U.O. Steiner, H.J. Snaith, A bicontinuous double gyroid hybrid solar cell. Nano Lett. 9(8), 2807–2812 (2009). doi:10.1021/nl803174p

    Article  CAS  Google Scholar 

  47. R.D. Schaller, V.I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004). doi:10.1103/PhysRevLett.92.186601

    Article  CAS  Google Scholar 

  48. G. Nair, M.G. Bawendi, Carrier multiplication yields of CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy. Phys. Rev. B 76, 081304(R) (2007)

    Article  Google Scholar 

  49. J.A. McGuire, M. Sykora, J. Joo, J.M. Pietryga, V.I. Klimov, Apparent versus true carrier multiplication yields in semiconductor nanocrystals. Nano Lett. 10, 2049–2057 (2010)

    Article  CAS  Google Scholar 

  50. I. Arslan, A.A. Talin, G.T. Wang, Three-dimensional visualization of surface defects in core-shell nanowires. J. Phys. Chem. C 112, 11093 (2008)

    Article  CAS  Google Scholar 

  51. G.T. Wang, A.A. Talin, D.J. Werder, J.R. Creighton, E. Lai, R.J. Anderson, I. Arslan, Highly aligned, template-free growth and characterization of vertical GaN nanowires on sapphire by metal-organic chemical vapor deposition. Nanotechnology 17, 5773 (2006)

    Article  CAS  Google Scholar 

  52. V.M. Agranovich, D.M. Basko, G.C. La Rocca, F. Bassani, New concept for organic LEDs: non-radiative electronic energy transfer from semiconductor quantum well to organic overlayer. Synth. Met. 116(1–3), 349–351 (2001)

    Article  CAS  Google Scholar 

  53. M. Achermann, M.A. Petruska, S. Kos, D.L. Smith, D.D. Koleske, V.I. Klimov, Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429(6992), 642–646 (2004)

    Article  CAS  Google Scholar 

  54. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321(5888), 554–557 (2008). doi:10.1126/science.1159725

    Article  CAS  Google Scholar 

  55. A. Popescu, L.M. Woods, J. Martin, G.S. Nolas, Model of transport properties of thermoelectric nanocomposite materials. Phys. Rev. B 79(20), 205302 (2009)

    Article  Google Scholar 

  56. Y. Hishinuma, T.H. Geballe, B.Y. Moyzhes, T.W. Kenny, Refrigeration by combined tunneling and thermionic emission in vacuum: use of nanometer scale design. Appl. Phys. Lett. 78(17), 2572–2574 (2001)

    Article  CAS  Google Scholar 

  57. D.V. Seletskiy, S.D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, S.-B. Mansoor, Laser cooling of solids to cryogenic temperatures. Nat. Photonics 4(3), 161–164 (2010). doi:10.1038/nphoton.2009.269

    Article  CAS  Google Scholar 

  58. C.B. Vining, An inconvenient truth about thermoelectrics. Nat. Mater. 8(2), 83–85 (2009)

    Article  CAS  Google Scholar 

  59. V.I. Zverev, A.M. Tishin, M.D. Kuz’min, The maximum possible magnetocaloric Delta T effect. J. Appl. Phys. 107(4), 043907–043903 (2010)

    Article  Google Scholar 

  60. R.I. Epstein, K.J. Malloy, Electrocaloric devices based on thin-film heat switches. J. Appl. Phys. 106(6), 064509–064507 (2009)

    Article  Google Scholar 

  61. P.F. Liu, J.L. Wang, X.J. Meng, J. Yang, B. Dkhil, J.H. Chu, Huge electrocaloric effect in Langmuir-Blodgett ferroelectric polymer thin films. New J. Phys. 12, 023035 (2010). doi:10.1088/1367-2630/12/2/023035

    Article  Google Scholar 

  62. A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311(5765), 1270–1271 (2006). doi:10.1126/science.1123811

    Article  CAS  Google Scholar 

  63. B. Neese, B. Chu, S.-G. Lu, Y. Wang, E. Furman, Q.M. Zhang, Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321(5890), 821–823 (2008). doi:10.1126/science.1159655

    Article  CAS  Google Scholar 

  64. T. Kato, T. Nagahara, Y. Agari, M. Ochi, High thermal conductivity of polymerizable liquid-crystal acrylic film having a twisted molecular orientation. J. Polym. Sci. B Polym. Phys. 44(10), 1419–1425 (2006)

    Article  CAS  Google Scholar 

  65. M. Marinelli, F. Mercuri, U. Zammit, F. Scudieri, Thermal conductivity and thermal diffusivity of the cyanobiphenyl (nCB) homologous series. Phys. Rev. E 58(5), 5860 (1998)

    Article  CAS  Google Scholar 

  66. J.R.D. Pereira, A.J. Palangana, A.C. Bento, M.L. Baesso, A.M. Mansanares, E.C. da Silva, Thermal diffusivity anisotropy in calamitic-nematic lyotropic liquid crystal. Rev. Sci. Instrum. 74(1), 822–824 (2003). doi:10.1063/1.1519677 DOI:dx.doi.org

    Article  CAS  Google Scholar 

  67. F. Rondelez, W. Urbach, H. Hervet, Origin of thermal conductivity anisotropy in liquid crystalline phases. Phys. Rev. Lett. 41(15), 1058 (1978)

    Article  CAS  Google Scholar 

  68. W. Urbach, H. Hervet, F. Rondelez, Thermal diffusivity in mesophases: a systematic study in 4-4[prime]-di-(n-alkoxy) azoxy benzenes. J. Chem. Phys. 78(8), 5113–5124 (1983)

    Article  CAS  Google Scholar 

  69. I. Dierking, G. Scalia, P. Morales, Liquid crystal-carbon nanotube dispersions. J. Appl. Phys. 97(4), 044309–044305 (2005)

    Article  Google Scholar 

  70. J. Lagerwall, G. Scalia, M. Haluska, U. Dettlaff-Weglikowska, S. Roth, F. Giesselmann, Nanotube alignment using lyotropic liquid crystals. Adv. Mater. 19(3), 359–364 (2007). doi:10.1002/adma.200600889

    Article  CAS  Google Scholar 

  71. M.D. Lynch, D.L. Patrick, Organizing carbon nanotubes with liquid crystals. Nano Lett. 2(11), 1197–1201 (2002)

    Article  CAS  Google Scholar 

  72. W. Song, I.A. Kinloch, A.H. Windle, Nematic liquid crystallinity of multiwall carbon nanotubes. Science 302(5649), 1363 (2003). doi:10.1126/science.1089764

    Article  CAS  Google Scholar 

  73. G.D. Watkins, EPR Observation of close Frenkel pairs in irradiated ZnSe. Phys. Rev. Lett. 33(4), 223 (1974)

    Article  CAS  Google Scholar 

  74. B.D. Wirth, Materials science: how does radiation damage materials? Science 318(5852), 923–924 (2007). doi:10.1126/science.1150394

    Article  CAS  Google Scholar 

  75. T. Diaz de la Rubia, H.M. Zbib, T.A. Khraishi, B.D. Wirth, M. Victoria, M.J. Caturla, Multiscale modelling of plastic flow localization in irradiated materials. Nature 406(6798), 871–874 (2000)

    Article  Google Scholar 

  76. N. Nita, R. Schaeublin, M. Victoria, Impact of irradiation on the microstructure of nanocrystalline materials. J. Nucl. Mater. 329–333(Part 2), 953–957 (2004)

    Article  Google Scholar 

  77. Y. Chimi, A. Iwasea, N. Ishikawaa, M. Kobiyamab, T. Inamib, S. Okuda, Accumulation and recovery of defects in ion-irradiated nanocrystalline gold. J. Nucl. Mater. 297(3), 355–357 (2001). doi:10.1016/S0022-3115(01)00629-8

    Article  CAS  Google Scholar 

  78. M. Rose, A.G. Balogh, H. Hahn, Instability of irradiation induced defects in nanostructured materials. Nucl Instrum. Meth. B 127–128, 119–122 (1997)

    Article  Google Scholar 

  79. T.D. Shen, S. Feng, M. Tang, J.A. Valdez, Y. Wang, K.E. Sickafus, Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett. 90(26), 263115–263113 (2007). doi:10.1063/1.2753098

    Article  Google Scholar 

  80. X.-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga, Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631–1634 (2010)

    Article  CAS  Google Scholar 

  81. S. Moghaddam, E. Pengwang, Y.-B. Jiang, A.R. Garcia, D.J. Burnett, C.J. Brinker, R.I. Masel, M.A. Shannon, An inorganic–organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure. Nat. Nano 5(3), 230–236 (2010). doi:10.1038/nnano.2010.13

    Article  CAS  Google Scholar 

  82. Y.B. Jiang, N.G. Liu, H. Gerung, J.L. Cecchi, C.J. Brinker, Nanometer-thick conformal pore sealing of self-assembled mesoporous silica by plasma-assisted atomic layer deposition. J. Am. Chem. Soc. 128(34), 11018–11019 (2006)

    Article  CAS  Google Scholar 

  83. H. Zhou, Y. Wang, Development of a new-type lithium-air battery with large capacity. Advanced Industrial Science and Technology (AIST) Press Release (2009), Available online: http://www.aist.go.jp/aist_e/latest_research/2009/20090727/20090727.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jeffrey Brinker .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business B.V.

About this chapter

Cite this chapter

Brinker, C.J., Ginger, D. (2011). Nanotechnology for Sustainability: Energy Conversion, Storage, and Conservation. In: Nanotechnology Research Directions for Societal Needs in 2020. Science Policy Reports, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1168-6_7

Download citation

Publish with us

Policies and ethics