Skip to main content

Synthesis, Processing, and Manufacturing of Components, Devices, and Systems

  • Chapter
  • First Online:
Nanotechnology Research Directions for Societal Needs in 2020

Part of the book series: Science Policy Reports ((SCIPOLICY,volume 1))

Abstract

The last decade has been an exciting period of discovery in the synthesis and processing of nanostructures. Many new nanomaterials have emerged, along with new fabrication processes to generate them. The last decade has seen penetration of nanotechnology into almost every area and discipline in science and engineering. Nanotechnology has been used in commercial products, including nanostructured coatings, cosmetics, textiles and magnetic storage devices, among many others. While such products mark much more purpose-oriented use and application of nanostructures, there also has been important basic research concerning the toolkits for synthesis, fabrication, and patterning of nanostructures, in addition to bioinspired synthesis and directed self-assembly. Many of these advances show great promise for the development of new nanomanufacturing processes that will drive the creation of future nanosystems and devices. For example, the last ten years have seen the development of novel synthesis approaches for a range of nanoscale materials including aerosols, colloids, thin-films, nanocrystalline metals, ceramics, biomaterials, and nanoporous or nanocomposite structures. Importantly, several of these methodologies have improved upon industrially-relevant practices such as combustion, electrophoretic processes, electrodeposition, electrospinning, anodization, and sputtering. Over the same period of time, entirely new nanostructures, such as graphene, have been identified and their unique properties may lead to important technology advances.

With contributions from: Matthew R. Jones, Louise R. Giam, Richard Siegel, James Ruud, Fereshteh Ebrahimi, Sean Murdock, Robert Hwang, Xiang Zhang, John Milner, John Belk, Mark Davis, Tadashi Shibata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Braunschweig, F. Huo, C. Mirkin, Molecular printing. Nat. Chem. 1(5), 353–358 (2009)

    Article  CAS  Google Scholar 

  2. President’s Council of Advisors on Science and Technology (PCAST), Report to the President and Congress on the Third Assessment of the National Nanotechnology Initiative, Assessment and Recommendations of the National Nanotechnology Advisory Panel (Office of Science and Technology Policy, Washington, DC, 2010)

    Google Scholar 

  3. J. Bang, U. Jeong, D.Y. Ryu, T.P. Russell, C.J. Hawker, Block copolymer nanolithography: translation of molecular level control to nanoscale patterns. Adv. Mater. 21, 1–24 (2009)

    Google Scholar 

  4. F.S. Bates, G.H. Fredrickson, Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem. 41, 525–557 (1990)

    Article  CAS  Google Scholar 

  5. C.T. Black, K.W. Guarini, K.R. Milkove, S.M. Baker, M.T. Tuominen, T.P. Russell, Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication. Appl. Phys. Lett. 79, 409 (2001)

    Article  CAS  Google Scholar 

  6. K.W. Guarini, C.T. Black, Y. Zhang, H. Kim, E.M. Sikorski, I.V. Babich, Process Integration of self-assembled polymer templates into silicon nanofabrication. J Vac. Sci. Technol. B 20, 2788 (2002)

    Article  CAS  Google Scholar 

  7. M. Park, C. Harrrison, P.M. Chaikin, R.A. Register, D.H. Adamson, Block copolymer lithography: periodic arrays of 1011 holes in 1 square centimeter. Science 276, 1401 (1997)

    Article  CAS  Google Scholar 

  8. T. Thurn-Albrecht, J. Schotter, G.A. Kaestle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C.T. Black, M.T. Tuominen, T.P. Russell, Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290, 2126 (2000)

    Article  CAS  Google Scholar 

  9. C.T. Black, R. Ruiz, G. Breyta, J.Y. Cheng, M.E. Colburn, K.W. Guarini, H.C. Kim, Y. Zhang, Polymer self assembly in semiconductor microelectronics. IBM J. Res. Dev. 51, 605 (2007)

    Article  CAS  Google Scholar 

  10. R.A. Pai, R. Humayun, M.T. Schulberg, A. Sengupta, J.N. Sun, J.J. Watkins, Mesoporous silicates prepared using preorganized templates in supercritical fluids. Science 303, 507 (2004)

    Article  CAS  Google Scholar 

  11. N. Sivakumar, M. Li, R.A. Pai, J.K. Bosworth, P. Busch, D.M. Smilgies, C.K. Ober, T.P. Russell, J.J. Watkins, An efficient route to mesoporous silica films with perpendicular nanochannels. Adv. Mater. 20, 246 (2008)

    Article  CAS  Google Scholar 

  12. S.C. Warren, F.J. Disalvo, U. Wiesner, Nanoparticle-tuned assembly and disassembly of mesostructured silica. Nat. Mater. 6, 156 (2007)

    Article  CAS  Google Scholar 

  13. S.C. Warren, F.J. Disalvo, U. Wiesner, Erratum: nanoparticle-tuned assembly and disassembly of mesostructured silica hybrid. Nat. Mater. 6, 248 (2007)

    Article  CAS  Google Scholar 

  14. I. Bita, J.K.W. Yang, Y.S. Jung, C.A. Ross, E.L. Thomas, K.K. Berggren, Graphoepitaxy of self-assembled block copolymers on 2D periodic patterned templates. Science 321, 939 (2008)

    Article  CAS  Google Scholar 

  15. C.T. Black, O. Bezencenet, Nanometer-scale pattern registration and alignment by directed diblock copolymer self-assembly. IEEE Trans. Nanotechnol. 3, 412–415 (2004)

    Article  Google Scholar 

  16. J.Y. Cheng, A.M. Mayes, C.A. Ross, Nanostructure engineering by templated self-assembly of block copolymers. Nat. Mater. 3, 823–828 (2004)

    Article  CAS  Google Scholar 

  17. J.Y. Cheng, C.T. Rettner, D.P. Sanders, H.C. Kim, W.D. Hinsberg, Dense self-assembly on sparse chemical patterns: rectifying and multiplying lithographic patterns using block copolymers. Adv. Mater. 20, 3155–3158 (2008)

    Article  CAS  Google Scholar 

  18. S. Park, B. Kim, O. Yavuzcetin, M.T. Tuominen, T.P. Russell, Ordering of PS-b-P4VP on patterned silicon surfaces. ACS Nano 2, 1363 (2008)

    Article  CAS  Google Scholar 

  19. S.Y. Park, A.K.R. Lytton-Jean, B. Lee, S. Weigand, G.C. Schatz, C.A. Mirkin, DNA-programmable nanoparticle crystallization. Nature 451(7178), 553–556 (2008)

    Article  CAS  Google Scholar 

  20. R. Ruiz, H.M. Kang, F.A. Detcheverry, E. Dobisz, D.S. Kercher, T.R. Albrecht, J.J. de Pablo, P.F. Nealey, Density multiplication and improved lithography by directed block copolymer assembly. Science 321, 936 (2008)

    Article  CAS  Google Scholar 

  21. R.A. Segalman, H. Yokoyama, E.J. Kramer, Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 13, 1152–1155 (2001)

    Article  CAS  Google Scholar 

  22. S. Park, D.H. Lee, J. Xu, B. Kim, S.W. Hong, U. Jeong, T. Xu, T.P. Russell, Macroscopic 10-terabit–per–square-inch arrays from block copolymers with lateral order. Science 323, 1030 (2009)

    Article  CAS  Google Scholar 

  23. J. Chai, J.M. Buriak, Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires. ACS Nano 2, 489 (2008)

    Article  CAS  Google Scholar 

  24. Y.S. Jung, J.B. Chang, E. Verploegen, K.K. Berggren, C.A. Ross, A path to ultranarrow ­patterns using self-assembled lithography. Nano Lett. 10, 1000 (2010)

    Article  CAS  Google Scholar 

  25. S.M. Park, G.S.W. Craig, Y.H. La, H.H. Solak, P.F. Nealey, Square arrays of vertical cylinders of PS-b-PMMA on chemically nanopatterned surfaces. Macromolecules 40, 5084–5094 (2007)

    Article  CAS  Google Scholar 

  26. C.B. Tang, E.M. Lennon, G.H. Fredrickson, E.J. Kramer, C.J. Hawker, Evolution of block copolymer lithography to highly ordered square arrays. Science 322, 429–432 (2008)

    Article  CAS  Google Scholar 

  27. G.M. Wilmes, D.A. Durkee, N.P. Balsara, J.A. Liddle, Bending soft block copolymer nanostructures by lithographically directed assembly. Macromolecules 39, 2435–2437 (2006)

    Article  CAS  Google Scholar 

  28. K. Galatsis, K.L. Wang, M. Ozkan, C.S. Ozkan, Y. Huang, J.P. Chang, H.G. Monbouquette, Y. Chen, P. Nealey, Y. Botros, Patterning and templating for nanoelectronics. Adv. Mater. 22, 769–778 (2010)

    Article  CAS  Google Scholar 

  29. J.K.W. Yang, Y.S. Jung, J.-B. Chang, R.A. Mickiewicz, A. Alexander-Katz, C.A. Ross, K.K. Berggren, Complex self-assembled patterns using sparse commensurate templates with locally varying motifs. Nat. Nanotechnol. 5, 256 (2010)

    Article  CAS  Google Scholar 

  30. A. Braunschweig, A. Senesi, C. Mirkin, Redox-activating dip-pen nanolithography (RA-DPN). J. Am. Chem. Soc. 131(3), 922–923 (2009)

    Article  CAS  Google Scholar 

  31. R. Piner, J. Zhu, F. Xu, S. Hong, C.A. Mirkin, “Dip-pen” nanolithography. Science 283(5402), 661–663 (1999)

    Article  CAS  Google Scholar 

  32. K. Salaita, Y. Wang, C.A. Mirkin, Applications of dip-pen nanolithography. Nat. Nanotechnol. 2(3), 145–155 (2007)

    Article  CAS  Google Scholar 

  33. L. Giam, Y. Wang, C. Mirkin, Nanoscale molecular transport: the case of dip-pen nanolithography. J. Phys. Chem. A 113, 3779–3782 (2009)

    Article  CAS  Google Scholar 

  34. S. Rozhok, R. Piner, C.A. Mirkin, Dip-pen nanolithography: what controls ink transport? J. Phys. Chem. B 107(3), 751–757 (2003)

    Article  CAS  Google Scholar 

  35. R. Jae-Won Jang, R.G. Sanedrin, A.J. Senesi, Z. Zheng, X. Chen, S. Hwang, L. Huang, C.A. Mirkin, Generation of metal photomasks by dip-pen nanolithography. Small 5(16), 1850–1853 (2009)

    Article  CAS  Google Scholar 

  36. K.-B. Lee, E.-Y. Kim, C.A. Mirkin, S.M. Wolinsky, The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency virus type 1 in plasma. Nano Lett. 4(10), 1869–1872 (2004)

    Article  CAS  Google Scholar 

  37. S. Minne, S.R. Manalis, A. Atalar, C.F. Quate, Independent parallel lithography using the atomic force microscope. J. Vac. Sci. Technol. B 14(4), 2456–2461 (1996)

    Article  CAS  Google Scholar 

  38. K. Salaita, S.W. Lee, X. Wang, L. Huang, T.M. Dellinger, C. Liu, C.A. Mirkin, Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography. Small 1(10), 940–945 (2005)

    Article  CAS  Google Scholar 

  39. K. Salaita, P. Sun, Y. Wang, H. Fuchs, C.A. Mirkin, Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays. Angew. Chem. Int. Ed Engl. 45(43), 7220–7223 (2006). doi:10.1002/anie.200603142

    Article  CAS  Google Scholar 

  40. D. Banerjee, A. Nabil, S. Disawal, J. Fragala, Optimizing microfluidic ink delivery for dip pen nanolithography. J. Microlith. Microfab. Microsys. 4(2), 023014 (2005). doi:10.1117/1.1898245

    Article  Google Scholar 

  41. F. Huo, Z. Zheng, G. Zheng, L.R. Giam, H. Zhang, C.A. Mirkin, Polymer pen lithography. Science 321(5896), 1658–1660 (2008). doi:10.1126/science.1162193

    Article  CAS  Google Scholar 

  42. Z. Zheng, W.L. Daniel, L.R. Giam, F. Huo, A.J. Senesi, G. Zheng, C.A. Mirkin, Multiplexed protein arrays enabled by polymer pen lithography: addressing the inking challenge. Angew. Chem. Int. Ed Engl. 48(41), 7626–7629 (2009). doi:10.1002/anie.200902649

    Article  CAS  Google Scholar 

  43. F. Huo, G. Zheng, X. Liao, L.R. Giam, J. Chai, X. Chen, W. Shim, C.A. Mirkin, Beam pen lithography. Nat. Nanotechnol. 5, 637–640 (2010). doi:10.1038/nnano.2010.161

    Article  CAS  Google Scholar 

  44. G.A. Ozin, A.C. Arsenault, Nanochemistry: A Chemical Approach to Nanomaterials (RSC Publishing, Cambridge, 2005)

    Google Scholar 

  45. L.D. Qin, S. Park, L. Huang, C.A. Mirkin, On-wire lithography. Science 309, 113–115 (2005)

    Article  CAS  Google Scholar 

  46. L.D. Qin, S. Zou, C. Xue, A. Atkinson, G.C. Schatz, C.A. Mirkin, Designing, fabricating, and imaging Raman hot spots. Proc. Natl. Acad. Sci. U.S.A. 103, 13300–13303 (2006). doi:10.1073/pnas.0605889103

    Article  CAS  Google Scholar 

  47. L.D. Qin, J.W. Jang, L. Huang, C.A. Mirkin, Sub-5-nm gaps prepared by on-wire ­lithography: correlating gap size with electrical transport. Small 3, 86–90 (2007)

    Article  CAS  Google Scholar 

  48. L.D. Qin, M.J. Banholzer, J.E. Millstone, C.A. Mirkin, Nanodisk codes. Nano Lett. 7, 3849–3853 (2007)

    Article  CAS  Google Scholar 

  49. A. Nitzan, M.A. Ratner, Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003)

    Article  CAS  Google Scholar 

  50. X. Chen, Y.-M. Jeon, J.-W. Jang, L. Qin, F. Huo, W. Wei, C.A. Mirkin, On-wire lithography-generated molecule-based transport junctions: a new testbed for molecular electronics. J. Am. Chem. Soc. 130(26), 8166–8168 (2008). doi:10.1021/ja800338w

    Article  CAS  Google Scholar 

  51. Z. Nie, A. Petukhova, E. Kumacheva, Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5(1), 15–25 (2010)

    Article  CAS  Google Scholar 

  52. D.V. Talapin, J.-S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110(1), 389–458 (2009). doi:10.1021/cr900137k

    Article  CAS  Google Scholar 

  53. M.-H. Lin, H.-Y. Chen, S. Gwo, Layer-by-layer assembly of three-dimensional colloidal supercrystals with tunable plasmonic properties. J. Am. Chem. Soc. 132(32), 11259–11263 (2010)

    Article  CAS  Google Scholar 

  54. E.V. Shevchenko, D.V. Talapin, N.A. Kotov, S. O’Brien, C.B. Murray, Structural diversity in binary nanoparticle superlattices. Nature 439(7072), 55–59 (2006). http://www.nature.com/nature/journal/v439/n7072/abs/nature04414.html - a1

    Google Scholar 

  55. H.D. Hill, R.J. Macfarlane, A.J. Senesi, B. Lee, S.Y. Park, C.A. Mirkin, Controlling the lattice parameters of gold nanoparticle FCC crystals with duplex DNA linkers. Nano Lett. 8(8), 2341–2344 (2008). doi:10.1021/nl8011787

    Article  CAS  Google Scholar 

  56. R.J. Macfarlane, B. Lee, H.D. Hill, A.J. Senesi, S. Seifert, C.A. Mirkin, Assembly and organization processes in DNA-directed colloidal crystallization. Proc. Natl. Acad. Sci. U.S.A. 106(26), 10493–10498 (2009)

    Article  CAS  Google Scholar 

  57. R. Macfarlane, M.R. Jones, A.J. Senesi, K.L. Young, B. Lee, J. Wu, C.A. Mirkin, Establishing the design rules for DNA-mediated programmable colloidal crystallization. Angew. Chem. Int. Ed Engl. 49(27), 4589–4592 (2010)

    Article  CAS  Google Scholar 

  58. M. Jones, R.J. Macfarlane, B. Lee, J. Zhang, K.L. Young, A.J. Senesi, C.A. Mirkin, DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater. 9, 913–917 (2010). doi:10.1038/nmat2870

    Article  CAS  Google Scholar 

  59. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  60. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  61. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  CAS  Google Scholar 

  62. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)

    Article  CAS  Google Scholar 

  63. J.N. Randall, J.B. Ballard, J.W. Lyding, S. Schmucker, J.R. Von Her, R. Saini, H. Xu, Y. Ding, Atomic precision patterning on Si: an opportunity for a digitized process. Microelectron. Eng. 87(5–8), 955–958 (2010)

    Article  CAS  Google Scholar 

  64. J.N. Randall, J.W. Lyding, S. Schmucker, J.R. Von Ehr, J. Ballard, R. Saini, H. Xu, Y. Ding, Atomic precision lithography on Si. J. Vac. Sci. Technol. B 27(6), 2764 (2009). doi:10.1116/1.3237096

    Article  CAS  Google Scholar 

  65. Y. Suda, N. Hosoya, K. Miki, Si submonolayer and monolayer digital growth operation techniques using Si2H6 as atomically controlled growth nanotechnology. Appl. Surf. Sci. 216(1–4), 424–430 (2003)

    Article  CAS  Google Scholar 

  66. D.A. Tomalia, J.M.J. Fréchet (eds.), Dendrimers and Other Dendritic Polymers (Wiley, Chichester, 2001)

    Google Scholar 

  67. D.A. Tomalia, Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci. 30(3–4), 294–324 (2004)

    Google Scholar 

  68. M. Peterca, V. Percec, M.R. Imam, P. Leowanawat, K. Morimitsu, P.A. Heiney, Molecular ­structure of helical supramolecular dendrimers. J. Am. Chem. Soc. 130(44), 14840–14852 (2008)

    Article  CAS  Google Scholar 

  69. B.M. Rosen, D.A. Wilson, C.J. Wilson, M. Peterca, B.C. Won, C. Huang, L.R. Lipski, X. Zeng, G. Ungar, P.A. Heiney, V. Percec, Predicting the structure of supramolecular dendrimers via the analysis of libraries of AB3 and constitutional isomeric AB2 biphenylpropyl ether self-assembling dendrons. J. Am. Chem. Soc. 131(47), 17500–17521 (2009). doi:10.1021/ja806524m

    Article  CAS  Google Scholar 

  70. D.A. Tomalia, In quest of a systematic framework for unifying and defining nanoscience. J. Nanopart. Res. 11(6), 1251–1310 (2009)

    Article  CAS  Google Scholar 

  71. D.A. Tomalia, Dendrons/dendrimers: quantized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesis. Soft Matter 6(3), 456–474 (2010)

    Article  CAS  Google Scholar 

  72. V. Marx, Poised to branch out. Nat. Biotechnol. 26(7), 729–732 (2008)

    Article  CAS  Google Scholar 

  73. A.R. Menjoge, R.M. Kannan, D.A. Tomalia, Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov. Today 15(5–6), 171–185 (2010)

    Article  CAS  Google Scholar 

  74. C.C. Lee, J.A. MacKay, J.M.J. Fréchet, F.C. Szoka, Designing dendrimers for biological applications. Nat. Biotechnol. 23(12), 1517–1526 (2005). doi:10.1038/nbt1171

    Article  CAS  Google Scholar 

  75. V. Percec, D.A. Wilson, P. Leowanawat, C.J. Wilson, A. Hughes, M.S. Kaucher, D.A. Hammer, D.H. Levine, A.J. Kim, F.S. Bates, K.P. Davis, T.P. Lodge, M.L. Klein, R.H. DeVane, E. Aqad, B.M. Rosen, A.O. Argintaru, M.J. Sienkowska, K. Rissanen, S. Nummelin, J. Ropponen, Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 328(5981), 1009–1014 (2010). doi:10.1126/science.1185547

    Article  CAS  Google Scholar 

  76. F. Beguin, E. Frackowiak (eds.), Carbide-derived carbon and templated carbons, in Carbons for electrochemical energy storage and conversion systems, ed. by T. Kyotani, J. Chmiola, Y. Gogotsi (CRC Press/Taylor and Francis, Boca Raton, 2009), pp. 77–114

    Google Scholar 

  77. C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130(9), 2730–2731 (2008). doi:10.1021/ja7106178

    Article  CAS  Google Scholar 

  78. S. Yachamaneni, G. Yushin, S.H. Yeon, Y. Gogotsi, C. Howell, S. Sandeman, G. Phillips, S. Mikhalovsky, Mesoporous carbide-derived carbon for cytokine removal from blood plasma. Biomaterials 31(18), 4789–4794 (2010)

    Article  CAS  Google Scholar 

  79. M. Kruk, C.M. Hui, Thermally induced transition between open and closed spherical pores in ordered mesoporous silicas. J. Am. Chem. Soc. 130(5), 1528–1529 (2008)

    Article  CAS  Google Scholar 

  80. V. Soghomonian, J.J. Heremans, Characterization of electrical conductivity in a zeolite like material. Appl. Phys. Lett. 95(15), 152112 (2009)

    Article  CAS  Google Scholar 

  81. K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L.-Q. Chen, D.G. Schlom, C.B. Eom, Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306(5698), 1005–1009 (2004). doi:10.1126/science.1103218

    Article  CAS  Google Scholar 

  82. J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom, Room-temperature ferroelectricity in strained SrTiO3. Nature 430(7001), 758–761 (2004). doi:10.1038/nature02773

    Article  CAS  Google Scholar 

  83. D.G. Schlom, L.-Q. Chen, C.-B. Eom, K.M. Rabe, S.K. Streiffer, J.-M. Triscone, Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37(1), 589–626 (2007)

    Article  CAS  Google Scholar 

  84. M.P. Warusawithana, C. Cen, C.R. Sleasman, J.C. Woicik, Y. Li, L.F. Kourkoutis, J.A. Klug, H. Li, P. Ryan, L.-P. Wang, M. Bedzyk, D.A. Muller, L.-Q. Chen, J. Levy, D.G. Schlom, A ferroelectric oxide made directly on silicon. Science 324(5925), 367–370 (2009)

    Article  CAS  Google Scholar 

  85. J.H. Lee, L. Fang, E. Vlahos, X. Ke, Y.W. Jung, L.F. Kourkoutis, J.-W. Kim, P.J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P.C. Hammel, K.M. Rabe, S. Kamba, J. Schubert, J.W. Freeland, D.A. Muller, C.J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, D.G. Schlom, A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 466(7309), 954–958 (2010)

    Article  CAS  Google Scholar 

  86. J. Mannhart, D.G. Schlom, Oxide interfaces – an opportunity for electronics. Science 327(5973), 1607–1611 (2010)

    Article  CAS  Google Scholar 

  87. H. Chen, Y.A. Elabd, G.R. Palmese, Plasma-aided template synthesis of inorganic nanotubes and nanorods. J. Mater. Chem. 17(16), 1593–1596 (2007)

    Article  CAS  Google Scholar 

  88. A. Rubio, J.L. Corkill, M.L. Cohen, Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49(7), 5081 (1994)

    Google Scholar 

  89. A. Zettl, Non-carbon nanotubes. Adv. Mater. 8(5), 443–445 (1996)

    Article  CAS  Google Scholar 

  90. X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Stability and band gap constancy of boron nitride nanotubes. Europhys. Lett. 28(5), 335 (1994). doi:10.1209/0295-5075/28/5/007

    Article  CAS  Google Scholar 

  91. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9(5), 430–435 (2010). doi:10.1038/nmat2711

    Article  CAS  Google Scholar 

  92. D. Golberg, Y. Bando, C.C. Tang, C.Y. Zhi, Boron nitride nanotubes. Adv. Mater. 19(18), 2413–2432 (2007)

    Article  CAS  Google Scholar 

  93. E. Brown, L. Hao, J.C. Gallop, J.C. Macfarlane, Ballistic thermal and electrical conductance measurements on individual multiwall carbon nanotubes. Appl. Phys. Lett. 87(2), 023107 (2005)

    Article  CAS  Google Scholar 

  94. P.G. Collins, A. Phaedon, Nanotubes for electronics. Sci. Am. 283(6), 62–69 (2000)

    Article  CAS  Google Scholar 

  95. P.G. Savva, K. Polychronopoulou, R.S. Ryzkov, A.M. Efstathiou, Low temperature catalytic decomposition of ethylene into H2 and secondary carbon nanotubes over Ni/CNTs. Appl. Catal. B 93(3–4), 314 (2010)

    Article  CAS  Google Scholar 

  96. T. Christoforou, C. Doumanidis, Biodegradable cellulose acetate nanofiber fabrication via electrospinning. J. Nanosci. Nanotechnol. 10(9), 1–8 (2010)

    Article  CAS  Google Scholar 

  97. European Commission, Toward a European strategy for nanotechnology (Office for Official Publications of the European Communities, Luxembourg, 2004). Available online: http://ec.europa.eu/nanotechnology/pdf/nano_com_en_new.pdf

  98. National Science and Technology Council, Committee on Technology, Subcommittee on Nanoscale Science, Engineering, and Technology, National Nanotechnology Initiative: Research and Development Supporting the Next Industrial Revolution (National Nanotechnology Initiative, Washington, DC, 2003). Available online: www.nano.gov/html/res/fy04-pdf/fy04%20…/NNI-FY04_front_matter.pdf

    Google Scholar 

  99. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  CAS  Google Scholar 

  100. F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)

    Article  CAS  Google Scholar 

  101. W.-S. Li, T. Aida, Dendrimer porphyrins and phthalocyanines. Chem. Rev. 109(11), 6047–6076 (2009)

    Article  CAS  Google Scholar 

  102. Y. Wang, L.R. Giam, M. Park, S. Lenhert, H. Fuchs, C.A. Mirkin, A self-correcting inking strategy for cantilever arrays addressed by an inkjet printer and used for dip-pen nanolithography. Small 4(10), 1666–1670 (2008). doi:10.1002/smll.200800770

    Article  CAS  Google Scholar 

  103. D. Stone, J. Liu, D.P. Singh, C. Muratore, A.A. Voevodin, S. Mishra, C. Rebholz, Q. Ge, S.M. Aouadi, “Layered atomic structures of double oxides for low shear strength at high temperatures.” Scripta Materialia 62(10), 735–738 (2010)

    Article  CAS  Google Scholar 

  104. C.C. Doumanidis, “Nanomanufacturing of random branching material architectures.” Microelectronic Engineering 86(4-6): 467–478

    Article  CAS  Google Scholar 

  105. M. Kokonou, C. Rebholz, K.P. Giannakopoulos, C.C. Doumanidis, Low aspect ratio porous ­alumina templates, Microelectron. Eng. 85(2008) 1186

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad A. Mirkin .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business B.V.

About this chapter

Cite this chapter

Mirkin, C.A., Tuominen, M. (2011). Synthesis, Processing, and Manufacturing of Components, Devices, and Systems. In: Nanotechnology Research Directions for Societal Needs in 2020. Science Policy Reports, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1168-6_4

Download citation

Publish with us

Policies and ethics