Skip to main content

Applications: Nanophotonics and Plasmonics

  • Chapter
  • First Online:
Nanotechnology Research Directions for Societal Needs in 2020

Part of the book series: Science Policy Reports ((SCIPOLICY,volume 1))

Abstract

Both nanophotonics and plasmonics concern investigations into building, manipulating, and characterizing optically active nanostructures with a view to creating new capabilities in instrumentation for the nanoscale, chemical and biomedical sensing, information and communications technologies, enhanced solar cells and lighting, disease treatment, environmental remediation, and many other applications. Photonics and plasmonics share the characteristic that at least some of their basic concepts have been known for 40–50 years, but they have come into their own only in the last 10 years, based on recent discoveries in nanoscience. Photonic materials and devices have played a pervasive role in communications, energy conversion, and sensing since the 1960s and 1970s. Photonics at the nanoscale, or nanophotonics might be defined as “the science and engineering of light-matter interactions that take place on wavelength and subwavelength scales where the physical, chemical, or structural nature of natural or artificial nanostructure matter controls the interactions” [1]. Broadly speaking, over the next 10 years nanophotonic structures and devices promise dramatic reductions in energies of device operation, densely integrated information systems with lower power dissipation, enhanced spatial resolution for imaging and patterning, and new sensors of increased sensitivity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     10−15 of a second.

References

  1. National Research Council of the National Academies (NRC), Nanophotonics: Accessibility and Applicability (National Academies Press, Washington, DC, 2008)

    Google Scholar 

  2. W.D. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  CAS  Google Scholar 

  3. M. Brongersma, V. Shalaev, The case for plasmonics. Science 328, 440–441 (2010)

    Article  CAS  Google Scholar 

  4. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010). doi:10.1038/nmat2630

    Article  CAS  Google Scholar 

  5. M. Roco, S. Williams, P. Alivisatos (eds.), Nanotechnology Research Directions: Vision for Nanotechnology R&D in the Next Decade. (NSTC/Springer, Washington, DC, 1999), previously Kluwer, 2000. Available online: http://www.nano.gov/html/res/pubs.html

  6. R.D. Dupuis, P.D. Dapkus, N. Holonyak, E.A. Rezek, R. Chin, Room-temperature laser operation of quantum-well Ga(1-x)Al(x)As-GaAs laser diodes grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 32(5), 295–299 (1978). doi:10.1063/1.90026

    Article  CAS  Google Scholar 

  7. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059–2062 (1987). Available online: http://www.ee.ucla.edu/labs/photon/pubs/ey1987prl5820.pdf

    Article  CAS  Google Scholar 

  8. V.G. Veselago, Electrodynamics of substances with simultaneously negative values of sigma and mu. Sov. Phys. USPEKHI USSR 10, 509–514 (1968)

    Article  Google Scholar 

  9. M.C. Albrecht, J.A. Creighton, Anomalously intense Raman-spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977)

    Article  CAS  Google Scholar 

  10. D.L. Jeanmaire, R.P. Van Duyne, Surface Raman spectroelectrochemistry, 1. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 82(1), 1–20 (1977). doi:10.1016/S0022-0728(77)80224-6

    Article  Google Scholar 

  11. M. Brongersma, Plasmonics: electromagnetic energy transfer and switching in nanoparticle chain-arrays below the diffraction limit. in MRS. Symposium Proceedings H (Molecular Electronics), vol 582, Boston, 1999, p 502

    Google Scholar 

  12. B.-S.S. Song, T.A. Noda, Y. Akahane, Ultra-high-Q photonic double-heterostructure nanocavity. Nat. Mater. 4, 207–210 (2005). doi:10.1038/nmat1320

    Article  CAS  Google Scholar 

  13. H.K. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, L. Kuipers, Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94(7), 073903/1–4 (2005). doi:10.1103/PhysRevLett.94.073903

    Article  Google Scholar 

  14. M.Y. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902/1–4 (2001). doi:10.1103/PhysRevLett.87.253902

  15. Y.A. Vlasov, M. O’Boyle, H.F. Hamann, S.J. McNab, Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005). doi:10.1038/nature04210

    Article  CAS  Google Scholar 

  16. T. Krauss, Slow light in photonic crystal waveguides. J. Phys. D 40(9), 2666–2670 (2007). doi:10.1088/0022-3727/40/9/S07

    Article  CAS  Google Scholar 

  17. K.B. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E.L. Hu, A. Imamoglu, Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007). doi:10.1038/nature05586

    Article  CAS  Google Scholar 

  18. J.S. Reithmaier, Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004)

    Article  CAS  Google Scholar 

  19. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal cavity. Nature 432, 200–203 (2004). doi:10.1038/nature03119

    Article  CAS  Google Scholar 

  20. M.H. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974). doi:10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  21. M. Moskovits, Surface-roughness and enhanced intensity of Raman-scattering by molecules adsorbed on metals. J. Chem. Phys. 69, 4159–4162 (1978). doi:10.1063/1.437095

    Article  CAS  Google Scholar 

  22. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22(7), 475–477 (1997). doi:10.1364/OL.22.000475

    Article  CAS  Google Scholar 

  23. T.L. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998). doi:10.1038/35570

    Article  CAS  Google Scholar 

  24. J. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000). doi:10.1103/PhysRevLett.85.3966

    Article  CAS  Google Scholar 

  25. V.M. Shalaev, Transforming light. Science 322, 384–386 (2008). doi:10.1126/science.1166079

    Article  CAS  Google Scholar 

  26. P.R. West,S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photon. Rev. 1–13, (2010). doi:10.1002/lpor.200900055

    Google Scholar 

  27. W.P. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X.M. Yang, X. Zhu, N.J. Gokemeijer, Y.-T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, E.C. Gage, Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat. Photonics 3, 220–224 (2009). doi:10.1038/nphoton.2009.2

    Article  CAS  Google Scholar 

  28. L.S. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003). doi:10.1073/pnas.2232479100

    Article  CAS  Google Scholar 

  29. L.B. Cao, D.N. Barsic, A.R. Guichard, Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7(11), 3523–3527 (2007)

    Article  CAS  Google Scholar 

  30. H.P. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2009)

    Article  Google Scholar 

  31. R.W. Pala, J. White, E. Barnard, J. Liu, M.L. Brongersma, Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009). doi:10.1002/adma.200900331

    Article  CAS  Google Scholar 

  32. W.W. Cai, J.S. White, M.L. Brongersma, Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett. 9(12), 4403–4411 (2009)

    Article  CAS  Google Scholar 

  33. L.S. Tang, E. Kocabas, S. Latif, A.K. Okyay, D.-S. Ly-Gagnon, K.C. Saraswat, D.A.B. Miller, Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat. Photonics 2, 226–229 (2008). doi:10.1038/nphoton.2008.30

    Article  CAS  Google Scholar 

  34. L.W. Cao, J.S. White, J.-S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009). doi:10.1038/nmat2477

    Article  CAS  Google Scholar 

  35. J.A. Schuller, T. Taubner, M.L. Brongersma, Optical antenna thermal emitters. Nat. Photonics 3, 658–661 (2009). doi:10.1038/nphoton.2009.188

    Article  CAS  Google Scholar 

  36. R. Zia, J.A. Schuller, A. Chandran, M.L. Brongersma, Plasmonics: the next chip-scale technology. Mater. Today 9, 20–27 (2006)

    Article  CAS  Google Scholar 

  37. A.M. Akimov, A. Mukherjee, C.L. Yu, D.E. Chang, A.S. Zibrov, P.R. Hemmer, H. Park, M.D. Lukin, Generation of single optical plasmons in metallic nanowired coupled to quantum dots. Nature 450, 402–406 (2007)

    Article  CAS  Google Scholar 

  38. A.J. Hryciw, Y.C. Jun, M.L. Brongersma, Electrifying plasmonics on silicon. Nat. Mater. 9, 3–4 (2010). doi:10.1038/nmat2598

    Article  CAS  Google Scholar 

  39. D.S. Bergman, M.I. Stockman, Surface plasmon amplification by stimulated emission of radiation. Phys. Rev. Lett. 90, 027402 (2003)

    Article  Google Scholar 

  40. M.T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P.J. van Veldhoven, F.W.M. van Otten, T.J. Eijkemans, J.P. Turkiewicz, H. de Waardt, E.J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, M.K. Smit, Lasing in metallic-coated nanocavities. Nat. Photonics 1, 589–594 (2007). doi:10.1038/nphoton.2007.171

    Article  CAS  Google Scholar 

  41. M.Z. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009). doi:10.1038/nature08318

    Article  CAS  Google Scholar 

  42. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009). doi:10.1038/nature08364

    Article  CAS  Google Scholar 

  43. N. Engheta, Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317(5845), 1698–1702 (2007). doi:10.1126/science.1133268

    Article  CAS  Google Scholar 

  44. V.R. Almeida, C.A. Barrios, R.R. Panepucci, M. Lipson, All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004)

    Article  CAS  Google Scholar 

  45. H. Hogan, Silicon photonics could save the computer industry. Photon. Spectra (Mar), 36 (2010), Available online: http://www.photonics.com/Article.aspx?AID=41611

  46. R.F. Service, Ever-smaller lasers pave the way for data highways made of light. Science 328, 810 (2010)

    Article  CAS  Google Scholar 

  47. A. Cho, Putting light’s light touch to work as optics meets mechanics. Science 328(5980), 812 (2010). doi:10.1126/science.328.5980.812

    Article  CAS  Google Scholar 

  48. M. Stockman, The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12, 024004–024021 (2010). doi:10.1088/2040-8978/12/2/024004

    Article  Google Scholar 

  49. K. Kelleher, Engineers light up cancer research. Emerging medicine: scientists design gold “nanoshells” that seek and destroy tumors. PopSci. (2003). Posted 6 Nov 2003. Retrieved 30 May 2010 from http://www.popsci.com/scitech/article/2003–11/engineers-light-cancer-research

  50. M. Foster, R. Salem, D. Geraghty, A. Turner-Foster, M. Lipson, A. Gaeta, Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008). doi:10.1038/nature07430

    Article  CAS  Google Scholar 

  51. J. Levy, A. Gondarenko, M. Foster, A. Gaeta, M. Lipson, CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics 4, 37–40 (2009). doi:10.1038/nphoton.2009.259

    Article  Google Scholar 

  52. MONA Consortium, Merging optics and nanotechnologies: a European roadmap for photonics and nanotechnologies (2008), Available online: http://www.ist-mona.org/

  53. Nanophotonics Europe Organization, Lighting the way ahead. Photonics 21: second strategic research agenda in photonics. (European Technology Platform Photonics21, Dieseldorf, 2010), Available online: http://www.photonics21.org/download/SRA_2010.pdf

  54. PhOREMOST Network of Excellence, Emerging Nanophotonics (PhOREMOST, Cork, 2008)

    Google Scholar 

  55. F. Xia, L. Sekaric, Y. Vlasov, Ultracompact optical buffers on a silicon chip. Nat. Photonics 1, 65–71 (2007). doi:10.1038/nphoton.2006.42

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn L. Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business B.V.

About this chapter

Cite this chapter

Hu, E.L., Brongersma, M., Baca, A. (2011). Applications: Nanophotonics and Plasmonics. In: Nanotechnology Research Directions for Societal Needs in 2020. Science Policy Reports, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1168-6_10

Download citation

Publish with us

Policies and ethics