Advertisement

Renaissance and Scientific Revolution

  • J. S. Rao
Part of the History of Mechanism and Machine Science book series (HMMS, volume 20)

Abstract

Technology has been traditionally the realm of craftsmen working by rough rules of trial and error. The existing knowledge base was a mass of confusion in the absence of a unified understanding of the behavioral motion of solids and fluids [7, 31, 35]. The man of knowledge was a natural philosopher rather than a scientist.

The reawakening of scientific thought was brought about during the Renaissance Period (1400-1600) and carried into the period of the scientific revolution. Leonardo da Vinci (1452-1519) has recently been credited for some fundamental contributions to solid mechanics, fluid mechanics and mechanical design much before the scientific revolution. His contributions appear in Codex Madrid I, one of two remarkable notebooks that were discovered in 1967 in the National Library of Spain (Madrid), after being misplaced for nearly 500 years, see [1, 45]. He correctly concluded that, in bending of beams due to transverse loads, plane cross-sections remain plane before and after bending and rotate as shown in Figure 5.1. Da Vinci lacked Hooke’s law and calculus to complete the theory; we had to wait for Galileo to improve this further before Euler and Bernoulli formed correct equations for simple bending.

Keywords

Beam Theory Scientific Revolution Natural Philosopher Bernoulli Model Bernoulli Beam Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ballarini, R.: The Da Vinci–Euler–Bernoulli Beam Theory? ME Magazine (2003), http://www.memagazine.org/contents/current/webonly/webex418.html
  2. 2.
    Bernoulli, J.: Curvatura Laminae Elasticae, Acta Eruditorum, Lipsiae (June 1694)Google Scholar
  3. 3.
    Bernoulli, J.: Discours sur les loix de la communication du mouvement, ch. 1-3. Prize Essay, Paris (1724)Google Scholar
  4. 4.
    Bernoulli, Daniel (1751) De vibrationibus et sono laminarum elasticarum commentationes physico-geometricae, Commentari Academiae Scientiarum Imperialis Petropolitanae. T.13 ad annum 1741 p. 43. p. 105.Google Scholar
  5. 5.
    Bruce, S.E. (1982) Kepler as Historian of Science: Precursors of Copernican Heliocentrism According to De revolutionibus, Proceedings of the American Philosophical Society, 126, p. 367.Google Scholar
  6. 6.
    Bucciarelli, L.L. and Dworsky, N. (1980) Sophie Germain: An Essay in the History of the Theory of Elasticity, Springer.Google Scholar
  7. 7.
    Butterfield, H. (1965) The Origins of Modern Science, 1300–1800, Free Press.Google Scholar
  8. 8.
    Chladini, E.F.F. (1787) Entdeckungen über die Theorie des Klanges.Google Scholar
  9. 9.
    Clagett, M. (1961) The Science of Mechanics in the Middle Ages, University of Wisconsin Press.Google Scholar
  10. 10.
    Cohen, H.F. (1994) The Scientific Revolution: A Historiographical Enquiry, University of Chicago Press.Google Scholar
  11. 11.
    Coulomb, C.A. (1784) Recherches théoriques et expérimentales sur la force de torsion, & sur l’élasticité des fils de métal: Application de cette théorie à l’emploi des métaux dans les Arts & dans Jonathan A. Hill, Bookseller, Inc., USA.Google Scholar
  12. 12.
    D’Alembert, J.L. (1743) Traite de Dynamique.Google Scholar
  13. 13.
    Descartes, René (1984–1991) The Philosophical Writings of Descartes, 3 vols., trans. J. Cottingham, R. Stoothoff, D. Murdoch and A. Kenny, Cambridge University Press.Google Scholar
  14. 14.
    Dym, C.L. and Shames, I.H. (1973) Solid Mechanics, A Variational Approach, McGraw-Hill Book Co.Google Scholar
  15. 15.
    Dumas, M. (Ed.) (1962) Histoire Generale des Techniques, Vols. I–IV, Paris.Google Scholar
  16. 16.
    Euler, L. (1736–1770) Mechanica sive Motus Scienta Analytice Exposita, 1736, Sur la force des colonnes, Berlin-Brandenburgischen Akademie der Wissenschaften – Memoires de l’Academie de Berlin, Tom. XIII, 1759, p. 252, De motu vibratorio fili flexilis, corpusculis quotcunque onusti, Novi Comentarii Academiae Scientarum Imperialis Petropolotanae, Vol. IX, 1764, Genuina Principia Doctrinae de Statu aequilibri et motu corporum tam perfecte flexibilium quam elasticorum, Novi Comentarii Academiae Scientarum Imperialis Petropolotanae, Vol. XV, 1770.Google Scholar
  17. 17.
    Fox, C. (1950) An Introduction to the Calculus of Variations, Oxford University Press.Google Scholar
  18. 18.
    Galileo Galilei (1638) Discorsi e Dimostrazioni mathematische, Leiden.Google Scholar
  19. 19.
    Galileo Galilei (1974) Two New Sciences, trans. Stillman Drake, University. of Wisconsin Press,Google Scholar
  20. 20.
    Grant, E.: The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional, and Intellectual Contexts. Cambridge University Press, Cambridge (1996)Google Scholar
  21. 21.
    Hall, A.R.: The Revolution in Science, 3rd edn., Longman, pp. 1500–1750 (1983)Google Scholar
  22. 22.
    Hamilton, W.R.: On a General Method in Dynamics. Philosophical Transaction of the Royal Society, Part I, 247–308 (1834); Part II, pp. 95–144 (1835)Google Scholar
  23. 23.
    Han, S.M., Benaroya, H. and Wei, T. (1999) Dynamics of Transversely Vibrating Beams Using Four Engineering Theories, Journal of Sound and Vibration, 225(5), p. 935.Google Scholar
  24. 24.
    Kirchoff. G. (1876) Vorlesungen über mathematisch Physik: Mechanik, Leipzig.Google Scholar
  25. 25.
    Kranzberg, M. and Pursell, C.W. Jr. (1967) Technology in Western Civilization, Vols. I–II, New York.Google Scholar
  26. 26.
    Kuhn, T.: The Copernican Revolution. Harvard University Press, Cambridge (1957)Google Scholar
  27. 27.
    Lagrange, J.L.: Mécanique Analytique, vol. 2, Gauthier-Villars et fils, Paris (1788)Google Scholar
  28. 28.
    Lanczos, C.: The Variational Principle of Mechanics. University of Toronto (1949)Google Scholar
  29. 29.
    Langhaar, H.L.: Energy Methods in Applied Mechanics. John Wiley & Sons, Chichester (1962)Google Scholar
  30. 30.
    Leibniz, G.: Demonstrationes novae de Resistentia solidorum. Acta Eruditorum Lipsiae, 319 (1684)Google Scholar
  31. 31.
    Lindberg, D.C.: The Beginnings of Western Science: The European Scientific Tradition in Philosophical, Religious, and Institutional Context, 600 B.C. to A.D. 1450. University. of Chicago Press, Chicago (1992)Google Scholar
  32. 32.
    Lindberg, D.C., Westman, R.S. (eds.): Reappraisals of the Scientific Revolution. Cambridge University Press, Cambridge (1990)Google Scholar
  33. 33.
    Love, A.E.H.: Mathematical Theory of Elasticity. Dover, New York (1944)zbMATHGoogle Scholar
  34. 34.
    Mahanty, S.: Marie-Sophie Germain, The Remarkable Woman Mathematicians of France. Dream 2047 8(10), 38 (2006)Google Scholar
  35. 35.
    Maier, A.: On the Threshold of Exact Science: Selected Writings on Late Medieval Natural Philosophy. University of Pennsylvania Press (1982)Google Scholar
  36. 36.
    Mariotte, E.: Traits du mouvement des eaux, Paris (1686)Google Scholar
  37. 37.
    McGuire, J.E., Rattansi, P.M.: Newton and the ‘Pipes of Pan’. Notes and Records of the Royal Society of London 21(2) (1966)Google Scholar
  38. 38.
    Lois, N.: De l’équilibre et du mouvement des corps solides élastiques, Paper Read to the Académie des Sciences, May 14 (1821)Google Scholar
  39. 39.
    Neugebauer, O.: On the Planetary Theory of Copernicus. Vistas in Astronomy 10 (1968)Google Scholar
  40. 40.
    Newton, I.: Principia Mathematica. Earl Gregg Swem Library. College of William & Mary (1786)Google Scholar
  41. 41.
    Prescott, J.: Applied Elasticity. Dover, New York (1946)Google Scholar
  42. 42.
    Rao, J.S.: Advanced Theory of Vibration. John Wiley & Sons, Chichester (1992)Google Scholar
  43. 43.
    Rao, J.S.: Dynamics of Plates. Marcel Dekker, New York (1998)Google Scholar
  44. 44.
    Rayleigh, J.W.S.: Theory of Sound, Macmillan, London. Dover Publication, New York (1945)zbMATHGoogle Scholar
  45. 45.
    Reti, L. (ed.): The Unknown Leonardo. McGraw-Hill Co., New York (1974)Google Scholar
  46. 46.
    Ritz, W.: Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. Journal für die Reine und Angewandte Mathematik 135, 1 (1909)CrossRefGoogle Scholar
  47. 47.
    Ritz, W.: Gesammelte Werke, Gauthier-Villars (1911)Google Scholar
  48. 48.
    Shapin, S.: The Scientific Revolution. University of Chicago Press, Chicago (1996)Google Scholar
  49. 49.
    Singer, C., et al. (eds.): A History of Technology, New York, vol. I–V (1954)Google Scholar
  50. 50.
    Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill Book Co., New York (1956)zbMATHGoogle Scholar
  51. 51.
    Stokes, G.G.: On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of ElSstic solids. Cambridge Philosophical Society Transactions 8, 287 (1849)Google Scholar
  52. 52.
    Timoshenko, S.P.: On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars. Philosophical Magazine 41, 744 (1921)Google Scholar
  53. 53.
    Timoshenko, S.P.: On the Transverse Vibrations of Bars of Uniform Cross-Section. Philosophical Magazine, 125 (1922)Google Scholar
  54. 54.
    Timoshenko, S.P.: History of Strength of Materials. McGraw-Hill Book Co., New York (1955)Google Scholar
  55. 55.
    Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill Book Co., New York (1951)zbMATHGoogle Scholar
  56. 56.
    Todhunter, I.: A History of the Theory of Elasticity and of the Strength of Materials: From Galilei to Lord Kelvin. Dover, New York (1960)zbMATHGoogle Scholar
  57. 57.
    Ullmann, D.: Life and Work of E.F.F. Chladini. The European Physical Journal – Special Topics 145(1), 25 (2007)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Varignon, P. (1702) De la Resistance des Solides en general pour toit ce qu’on peut faire d’hypothises touchant la force ou la tenacite des Fibres des Corps a rompre; Et en particulier pour les hypotheses de Galilee & de M. Mariotte, Memoires de l’Acadimie, Paris, p. 66.Google Scholar
  59. 59.
    Washizu, K.: Variational Principles in Continuum Mechanics, Report 62-2, University of Washington, College of Engineering (1962)Google Scholar
  60. 60.
    Washizu, K.: Variational Methods in Elasticity and Plasticity. Pergamon Press, Oxford (1982)zbMATHGoogle Scholar
  61. 61.
    Weinstock, R.: Calculus of Variations with Applications to Physics and Engineering. McGraw-Hill Book Co., New York (1952)zbMATHGoogle Scholar
  62. 62.
    Westfall, R.S.: The Construction of Modern Science. John Wiley and Sons, Chichester (1971)Google Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • J. S. Rao

    There are no affiliations available

    Personalised recommendations