Advertisement

Finite Element Methods for Rotor Dynamics

  • J. S. Rao
Part of the History of Mechanism and Machine Science book series (HMMS, volume 20)

Abstract

The finite element method for rotors was first developed by Ruhl and Booker [29]. Nelson and McVaugh [16] extended this to include gyroscopic effects. The effects of axial torque were included by Zorzi and Nelson [37] and Nelson [15] gave rotor dynamics elements with the Timoshenko beam theory. For details on the finite element method, see also [1, 4, 10, 11, 19].

Keywords

Solid Model Beam Model Critical Speed Timoshenko Beam Theory Gyroscopic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Childs, D.W.: Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis. Wiley Inter Science, Chichester (1993)Google Scholar
  2. 2.
    David, J.W., Park, N.G.: The Vibration Problem in Gear Coupled Rotor Systems. Bulletin JSME 29(252), 297 (1986)Google Scholar
  3. 3.
    Duffing, G.: Erzwungene Schwingungen bei veranderlicher Eigenfrequenz, F. Vieweg u. Sohn, Braunschweig (1918)Google Scholar
  4. 4.
    Ehrich, F.F.: Handbook of Rotor Dynamics. McGraw-Hill, New York (1992)Google Scholar
  5. 5.
    Ehrich, F.F.: Nonlinear Phenomena in Dynamic Response of Rotors in Anisotropic Mounting Systems. ASME Special 50th Anniversary Design Issue 117, 154 (1995)Google Scholar
  6. 6.
    Iida, H., Tamura, A., Kikuchi, K., Agata, H.: Coupled Torsional Flexural Vibration of a Shaft in a Geared System of Rotors. Bulletin JSME 23(186), 2111 (1980)Google Scholar
  7. 7.
    Goldman, P., Muszynska, A.: Chaotic Behavior of Rotor/Stator Systems with Rubs. ASME Journal of Engineering for Gas Turbines and Power 116, 692 (1994)CrossRefGoogle Scholar
  8. 8.
    Kahraman, A., Nevjat Ozguven, H., Houser, D.R., Zakrajsek, J.J.: Dynamic Analysis of Geared Rotors by Finite Elements. J. Mech Des., ASME 114, 507 (1982)CrossRefGoogle Scholar
  9. 9.
    Kiciński, J.: Rotor Dynamics, Institute of Fluid Flow Machinery. Polish Academy of Sciences, Gdansk (2006)Google Scholar
  10. 10.
    Lalanne, M., Ferraris, G.: Rotordynamics Prediction in Engineering. John Wiley and Sons, New York (1990)Google Scholar
  11. 11.
    Lalanne, M., Queau, J.P.: Calcul par elements finis du comportment dynamique des chaines cinematiques de reducteur, Societe Nationale des Industries Aerospatiale (1979)Google Scholar
  12. 12.
    Lund, J.W.: Critical Speed, Stability and Response of a Geared Train of Rotors. Journal of Mechanical Design, ASME 100, 535 (1978)CrossRefGoogle Scholar
  13. 13.
    Mohan, S., Hahn, E.J.: Design of squeeze film damper supports for rigid rotors. Journal of Engineering for Industry, Trans. ASME, 976 (1974)Google Scholar
  14. 14.
    Moon, F.C.: Chaotic Vibrations. John Wiley, Chichester (1987)zbMATHGoogle Scholar
  15. 15.
    Nelson, H.D.: Finite Rotating Shaft Element Using Timoshenko Beam Theory. Journal of Mechanical Design, ASME 102, 793 (1980)CrossRefGoogle Scholar
  16. 16.
    Nelson, H.D., McVaugh, J.M.: The Dynamics of Rotor Bearing Systems Using Finite Elements. Journal of Engineering for Industry, ASME 98, 593 (1976)CrossRefGoogle Scholar
  17. 17.
    Rajan, M., Nelson, H.D., Chen, W.J.: Parameters Sensitivity in the Dynamics of Rotor-Bearing Systems. Journal Vib. Acoustic. Stress Rel. Des., ASME 108, 197 (1986)Google Scholar
  18. 18.
    Rao, J.S.: Life Estimation of Gear Transmission Unit in a Turbine Generator Set due to Short Circuits. Mechanism and Machine Theory 27(3), 283 (1992)CrossRefGoogle Scholar
  19. 19.
    Rao, J.S.: Rotor Dynamics. New Age International (1996)Google Scholar
  20. 20.
    Rao, J.S.: Rotor Dynamics Comes of Age, Keynote address. In: Proceedings Sixth IFToMM International Conference Rotor Dynamics, Sydney, September 30-October 3, vol. I, p. 15 (2002)Google Scholar
  21. 21.
    Rao, J.S.: Recent Developments in Structural Design Aspects of Aircraft Engines. In: Proceedings National Conference on Association of Machines and Mechanisms, IIT, New Delhi, December 18-19. Professor B.M. Belgaumkar Memorial and Inaugural Lecture (2003)Google Scholar
  22. 22.
    Rao, J.S.: Transient Dynamics of Solid Rotors under high angular accelerations. Advances in Vibration Engineering, Journal of Vibration Institute of India 5(1), 25 (2006)Google Scholar
  23. 23.
    Rao, J.S., Shiau, T.N., Chang, J.R.: Coupled Bending-Torsion Vibration of Geared Rotors. In: Proceedings 1995 Design Engineering Technical Conferences, ASME DE, vol. 84-2, p. 977 (1995)Google Scholar
  24. 24.
    Rao, J.S., Shiau, T.N., Chang, J.R.: Theoretical Analysis of Lateral Response due to Torsional Excitation of Geared Rotors. Mechanism and Machine Theory 33(6), 761 (1998)zbMATHCrossRefGoogle Scholar
  25. 25.
    Rao, J.S., Sreenivas, R.: Dynamics of a Three Level Rotor System Using Solid Elements, ASME GT 2003-38783 (2003)Google Scholar
  26. 26.
    Rao, J.S., Sreenivas, R.: Dynamics of Asymmetric Rotors Using Solid Models. Advances in Vibration Engineering, Journal of Vibration Institute of India 3(3), 272 (2004)Google Scholar
  27. 27.
    Rao, J.S., Sreenivas, R., George, P.: Dynamics of High Speed Cryo Pump Rotors. In: Proceedings 8th International I Mech E Conference on Vibrations in Rotating Machinery, C623/103/2004, p. 467 (2004)Google Scholar
  28. 28.
    Rao, J.S., Sreenivas, R., Veeresh, C.V.: Solid Rotor Dynamics. In: Proceedings Fourteenth US National Congress of Theoretical and Applied Mechanics, Blacksburgh, VA, June 23-28 (2002); Advances in Vibration Engineering. Journal of Vibration Institute of India 2(4), 305 (2003)Google Scholar
  29. 29.
    Ruhl, R.L., Booker, J.F.: A Finite Element Model for Distributed Parameter Turborotor Systems. Journal of Engineering for Industry, Trans. ASME 94, 126 (1972)CrossRefGoogle Scholar
  30. 30.
    Schwibinger, P., Neumer, T., Zurbes, A., Nordmann, R.: The Influence of Torsional Lateral Coupling in Geared Rotor Systems on Its Eigen Values, Modes and Unbalance Vibrations. In: Proceedings I Mech E Conference Vibrations in Rotating Machinery, Edinburgh, vol. C295/88, p. 279 (1988)Google Scholar
  31. 31.
    Schwibinger, P., Nordmann, R.: The Influence of Torsional-Lateral Coupling on the Stability Behavior of Geared Rotor Systems. Journal of Engineering for Gas Turbines for Power, ASME 110, 563 (1988)CrossRefGoogle Scholar
  32. 32.
    Shiau, T.N., Rao, J.S., Chang, J.R.: Dynamic Coupling in Simple Geared Rotor Bearing System. In: Vibrations in Rotating Machinery, Instn. of Mech. Engrs., C500/127/96, p. 599 (1996)Google Scholar
  33. 33.
    Shiau, T.N., Rao, J.S., Chang, J.R., Siu-Tong, C.: Dynamic Behavior of Geared Rotors. Journal of Engineering for Gas Turbines and Power, Trans. ASME 121(3), 494 (1999)CrossRefGoogle Scholar
  34. 34.
    Stephenson, R.W., Rouch, K.E.: Modeling rotating shafts using axi-symmetric solid finite element with matrix reduction. ASME Journal of Vibration & Acoustics 115, 484 (1993)CrossRefGoogle Scholar
  35. 35.
    Surial, A., Kaushal, A.: Dynamic Analysis of a Variable Speed Industrial Gas Turbine Engine and Drivetrain – Analysis and Testing. Advances in Vibration Engineering 4(3), 279 (2005)Google Scholar
  36. 36.
    Yu, J., Craggs, A., Mioduchowski, A.: Modeling of shaft orbiting with 3-D solid finite elements. International Journal of Rotating Machinery 5, 53 (1999)CrossRefGoogle Scholar
  37. 37.
    Zorzi, E.S., Nelson, H.D.: The Dynamics of Rotor Bearing Systems with Axial Torque: A Finite Element Approach. ASME Journal of Mechanical Design 102, 158 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • J. S. Rao

    There are no affiliations available

    Personalised recommendations