Advertisement

Energy Methods

  • J. S. Rao
Part of the History of Mechanism and Machine Science book series (HMMS, volume 20)

Abstract

The fundamental principle in Physics is that the energy in the Universe is conserved; it can change in form but cannot be created or destroyed. Energy can be in various forms, important of these forms for vibration and rotor dynamics study is kinetic energy and potential energy (strain energy). In freely vibrating systems, these energies keep continuously change in these forms thus producing oscillatory motion for the mass.

Keywords

Virtual Work Energy Method Virtual Displacement Ritz Method High Order Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barr, A.D.S.: Torsional Waves in Uniform Rods of Non-Circular Section. Journal of Mechanical Engineering Sciences 4, 127 (1962)CrossRefGoogle Scholar
  2. 2.
    Barr, A.D.S.: Variational Methods for the Derivation of Approximate Equations of Motion for Elastic Beams. In: Proceedings of Southampton Symposium on Variational Methods in Vibration Problems, vol. 1, p. 15 (1966)Google Scholar
  3. 3.
    Bernoulli, D.: De vibrationibus et sono laminarum elasticarum commentationes physico-geometricae. Commentari Academiae Scientiarum Imperialis Petropolitanae. T. 13 ad annum 1741, 43, 105 (1751)Google Scholar
  4. 4.
    Bernoulli, J.: Discours sur les loix de la communication du mouvement, chs. 1–3, Prize Essay, Paris (1724)Google Scholar
  5. 5.
    Bishop, R.E.D.: Longitudinal Waves in Beams. Aero Quaterly 2, 280 (1952)MathSciNetGoogle Scholar
  6. 6.
    Carnegie, W.: Vibrations of Rotating Cantilever Blading: Theoretical Approaches to the Frequency Problem Based on Energy Methods. Journal of Mechanical Engineering Sciences 1, 235 (1959)CrossRefGoogle Scholar
  7. 7.
    Carnegie, W.: Vibrations of Pre-twisted Cantilever Blading: An Additional Effect due to Torsion. Proc. Instn. of Mech. Engrs. 176, 315 (1962)CrossRefGoogle Scholar
  8. 8.
    Carnegie, W.: A Note on the Use of Variational Method to derive the Equations of Motion of a Vibrating Beam of Uniform Cross-Section taking account of Shear Deflection and Rotary Inertia. Bulletin of Mechanical Engineering Education 2, 66 (1963)Google Scholar
  9. 9.
    Carnegie, W.: The Application of Variational Method to Derive the Equations of Motion of Vibrating Cantilever Blading under Rotation. Bulletin Mechanical Engineering Education 6, 29 (1967)Google Scholar
  10. 10.
    Coulomb, C.: Recherches Théoriques et Expérimentales sur la Force de Torsion et sur l’Élasticité des Fils de Metal, Histoire de l’Acadamie, Paris (1784)Google Scholar
  11. 11.
    Den Hartog, J.P.: Mechanical Vibration. McGraw-Hill Book Co., New York (1940)Google Scholar
  12. 12.
    Duncan, W.J.: Galerkin’s Method in Mechanics and Differential Equations, R&M No. 1798 (1937)Google Scholar
  13. 13.
    Duncan, W.J.: The Principle of Galerkin Method, R&M No. 1848 (1938)Google Scholar
  14. 14.
    Fleckenstein, J.O.: Johann und Jacob Bernoulli, Basel (1949)Google Scholar
  15. 15.
    Galerkin, B.G.: Series Solution of Some Problems of Elastic Equilibrium of Rods and Plates. VestnikInzhenerovi Tekhnikov 19, 897 (1915)Google Scholar
  16. 16.
    Gere, J.M.: Torsional Vibration of Beams of Thin Walled Open-Section. Journal of Applied Mechanics 21, 381 (1954)zbMATHGoogle Scholar
  17. 17.
    Hamilton, W.R.: On a General Method in Dynamics. Philosophical Transaction of the Royal Society Part I, 247–308 (1834); Part II, pp. 95–144 (1835)Google Scholar
  18. 18.
    Heimann, P.M.: Leibniz and Johann Bernoulli’s Theory of Motion. Centaurus 21(1), 1 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hellinger, E.: Die Algemeinen Ansätze der Mechanik der Kontinus. Encyclopädie die mathematische Wissenschaft 4, 654 (1914)Google Scholar
  20. 20.
    Hu, H.C.: On some Variational Principles in the Theory of Elasticity and the Theory of Plasticity. Scientia Sinica 4, 33 (1955)zbMATHGoogle Scholar
  21. 21.
    Kearton, W.J.: Steam Turbine Theory and Practice, Pitman (1926)Google Scholar
  22. 22.
    Kirchoff, G.: Vorlesungen über mathematische Physik: Mechanik, Leipzig (1876)Google Scholar
  23. 23.
    Krishna Murty, A.V.: Vibration of Short Beams. AIAA J. 8, 34 (1970)CrossRefGoogle Scholar
  24. 24.
    Lo, H., Goulard, M.: Torsion with Warping Restraint from Hamilton’s Principle, In. In: Proceedings 2nd Midwestern Conference on Solid Mechanics, p. 68 (1955)Google Scholar
  25. 25.
    Love, A.E.H.: Mathematical Theory of Elasticity. Dover, NewYork (1944)zbMATHGoogle Scholar
  26. 26.
    Mindlin, R.D., Herrmann, G.A.: One Dimensional Theory of Compressional Waves in Elastic Rods. In: Proceedings 1st US National Congress on Applied Mechanics, p. 233 (1954)Google Scholar
  27. 27.
    Rao, D.K., Rao, J.S.: On the Use of Hu–Washizu’s Variational Principle in Deriving the State Equations of Rods and Beams. Journal of Aeronautical Society of India, 85 (1974)Google Scholar
  28. 28.
    Rao, J.S.: The Fundamental Flexural Vibration of a Cantilever Beam of Rectangular Cross-Section with Uniform Taper. Aero. Quaterly 16, 139 (1965)Google Scholar
  29. 29.
    Rao, J.S.: A Refined Theory of Tortional Vibration of Bars. In: Proceedings of Noise, Shock & Vibration Conference, p. 171. Monash University, Melbourne (1974)Google Scholar
  30. 30.
    Rao, J.S., Vyas, N.S.: Shock in Rotor Blades During Speed Changes. Journal of Sound and Vibration 176(4), 531 (1994)zbMATHCrossRefGoogle Scholar
  31. 31.
    Rao, J.S., et al.: Coupled Bending Torsion Vibrations of Rotating Blades of Asymmetric Aerofoil Cross-Section Allowing for Shear Deflection and Rotary Inertia by Reissner Method. Journal of Sound and Vibration 75, 17 (1981)CrossRefGoogle Scholar
  32. 32.
    Rayleigh, J.W.S.: Theory of Sound. MacMillan, London (1877)Google Scholar
  33. 33.
    Reissner, E.: On a Variational Theorem in Elasticity. Journal of Mathematical Physics 29, 89 (1950)MathSciNetGoogle Scholar
  34. 34.
    Reissner, E.: On Nonuniform Torsion of Cylindrical Rods. Journal of Mathematical Physics 31, 214 (1952)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Ritz, W.: Gesammelte Werke, Gauthier-Villars (1911)Google Scholar
  36. 36.
    Saint-Venant, Memoir on Torsion (June 1853)Google Scholar
  37. 37.
    Scanlan, R.H., Rosenbaum, R.: Introduction to the Study of Aircraft Vibration and Flutter. Macmillan, Basingstoke (1951)zbMATHGoogle Scholar
  38. 38.
    Stodola, A.: Dampf- und Gasturbinen. Springer, Berlin (1910); Transl. Steam and Gas Turbines. McGraw-Hill, New York (1927)Google Scholar
  39. 39.
    Subrahmanyam, K.B., Kulkarni, S.V., Rao, J.S.: Journal of Sound and Vibration 75(1), 17 (1981)zbMATHCrossRefGoogle Scholar
  40. 40.
    Timoshenko, S.P.: On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars. Philosophical Magazine 41, 744 (1921)Google Scholar
  41. 41.
    Timoshenko, S.P.: Theory of Bending, Torsion and Buckling of Thin Walled Open Cross-Section. Journal of Franklin Institute 239, 201, 249, 343 (1945)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill Book Co., New York (1951)zbMATHGoogle Scholar
  43. 43.
    Todhunter, I.: A History of the Theory of Elasticity and of the Strength of Materials: From Galilei to Lord Kelvin. Dover, NewYork (1960)zbMATHGoogle Scholar
  44. 44.
    Volterra, E.: Method of Internal Constraints and Certain of Its Applications. Journal of Engineering Mechanics, Proceedings ASCE 87(EM4), 103 (1961)Google Scholar
  45. 45.
    Vyas, N.S., Rao, J.S.: Equations of Motion of a Blade Rotating with Variable Angular Velocity. Journal of Sound and Vibration 156(2), 327 (1992)zbMATHCrossRefGoogle Scholar
  46. 46.
    Washizu, K.: On the Bounds of Eigenvalues. The Quarterly Journal of Mechanics and Applied Mathematics 8(3), 311 (1955)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • J. S. Rao

    There are no affiliations available

    Personalised recommendations