Skip to main content

Different Music to the Same Score: Teaching About Genes, Environment, and Human Performances

  • Chapter
  • First Online:
Socio-scientific Issues in the Classroom

Part of the book series: Contemporary Trends and Issues in Science Education ((CTISE,volume 39))

Abstract

There is agreement within the science education community on the contributions of argumentation about socio-scientific issues (SSI) to scientific literacy and to the development of critical thinking (Kolstø, 2006). SSI involves scientific arguments in addition to political, personal or ethical questions about what action to choose (Kolstø, 2006). It is suggested that argumentation about SSI makes scientific learning meaningful, as it provides a context that connects science with everyday problems where citizens are expected to make decisions, and requires taking an active role to solve controversies. Argumentation in these contexts involves not only applying scientific knowledge, but also developing an independent opinion in order to critically examine scientific claims and arguments, in other words, becoming a critical thinker (Jiménez-Aleixandre & Puig, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanations. Science Education, 93, 26–55.

    Article  Google Scholar 

  • Bourdieu, P., & Passeron, J.-C. (1970). La reproduction. Eléments pour une théorie du système d’enseignement. Paris: Les Éditions de Minuit. Translated as: Reproduction in education, society and culture. London: Sage, 1977.

    Google Scholar 

  • Brousseau, G. (1998). Théorie des situations didactiques. Grenoble, France: La Pensée Sauvage.

    Google Scholar 

  • Chevallard, Y. (1991). La transposition didactique [Didactical transposition] (2nd ed.). Grenoble, France: La Pensée Sauvage.

    Google Scholar 

  • Cuvier, G. (1817). Extrait d’observations faites sur le cadavre d’une femme connue à Paris et à Londres sous le nom de Vénus Hottentotte. Mémoires du Muséum d’Histoire naturelle, 3, 259–274.

    Google Scholar 

  • Diehl, D., & Donnelly, M. P. (2008). Inventors and impostors. How history forgot the true heroes of invention and discovery. Richmond: Crimson.

    Google Scholar 

  • Dixon, R. (1982). Take two people. A genetics teaching kit. Journal of Biological Education, 16(4), 229–230.

    Article  Google Scholar 

  • Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ understandings of molecular genetics. Journal of Research in Science Teaching, 44(7), 938–959.

    Article  Google Scholar 

  • Duncan, R. G., Rogat, A. D., & Yarden, A. (2009). A learning progression for deepening students’ understanding of modern genetics across the 5th–10th grades. Journal of Research in Science Teaching, 46(6), 655–674.

    Article  Google Scholar 

  • Gelbart, H., & Yarden, A. (2006). Learning genetics through an authentic research simulation in bioinformatics. Journal of Biological Education, 40(3), 107–112.

    Article  Google Scholar 

  • Gould, J. (1981). The mismeasure of man. New York: W. W. Norton.

    Google Scholar 

  • Herrnstein, R. J., & Murray, C. (1994). The Bell curve. Intelligence and class structure in American life. New York: The Free Press.

    Google Scholar 

  • Jensen, A. (1969). How much can we boost IQ and scholastic achievement? Harvard Educational Review, 33, 1–123.

    Google Scholar 

  • Jiménez-Aleixandre, M. P. (2008). Designing argumentation learning environments. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 91–115). Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Jiménez-Aleixandre, M. P., & Federico-Agraso, M. (2009). Justification and persuasion about cloning: Arguments in Hwang’s paper and journalistic reported versions. Research in Science Education, 39(3), 331–347. doi:10.1007/s11165-008-9113-x.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P., & Fernández, L. (2010, March 21–24). What are authentic practices? Analysis of students-generated projects in secondary. Paper presented at the NARST annual meeting, Philadelphia.

    Google Scholar 

  • Jiménez-Aleixandre, M. P., & Pereiro, C. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental management. International Journal of Science Education, 24(11), 1171–1190.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P., & Puig, B. (2010). Argumentation, evidence evaluation and critical thinking. In B. Fraser, K. G. Tobin, & Mc Robbie (Eds.), Second international handbook of science education. Dordrecht, the Netherlands: Springer. In press.

    Google Scholar 

  • Jiménez-Aleixandre, M. P., & Puig, B. (2011). The role of justifications in integrating evidence in arguments: making sense of gene expression. Paper presented at the ESERA Conference, France: Lyon.

    Google Scholar 

  • Jiménez-Aleixandre, M. P., & Sanmartí Puig, N. (1995). The development of a new curriculum for secondary school in Spain: Opportunities for change. International Journal of Science Education, 17(4), 425–439.

    Article  Google Scholar 

  • Johnson, S. (1991). Food for thought. The cookie analogy. Center for Biology Education. Madison: University of Wisconsin. Downloaded April, 2010, from http www.wisc.edu/cbe/assets/docs/pdf/FoodForThought/cookie-analogy.pdf

  • Kaplan, C., & Llomovatte, S. (2009). Revisión del debate acerca de la desigualdad educativa en la sociología de la educación: la reemergencia del determinismo biológico. In S. Llomovatte & C. Kaplan (Eds.), Desigualdad educativa: la naturaleza como pretexto (pp. 9–21). Buenos Aires, Argentina: CEP.

    Google Scholar 

  • Knippels, M. C. (2002). Coping with the abstract and complex nature of genetics in biology ­education: The Yo-yo learning and teaching strategy (PhD dissertation, University of Utrecht, Utrecht, the Netherlands).

    Google Scholar 

  • Knippels, M. C. P. J., Waarloo, A. J., & Boersma, K Th. (2005). Design criteria for learning and teaching genetics. Journal of Biological Education, 39(3), 109–112.

    Article  Google Scholar 

  • Kolstø, S. D. (2006). Science students’ critical examination of scientific information related to socioscientific issues. Science Education, 90, 632–655.

    Article  Google Scholar 

  • Levy, R. S., Selles, S. E., & Ferreira, M. S. (2008). Examining the ambiguities of the human race concept in biology textbooks: Tensions between knowledge and values expressed in school knowledge. In M. Hamman et al. (Eds.), Biology in context: Learning and teaching for the twenty –  first century (pp. 338–346). London: University of London.

    Google Scholar 

  • Lewis, J., & Kattmann, U. (2004). Traits, genes, particles and information: Re-visiting students’ understandings f genetics. International Journal of Science Education, 26(2), 195–206.

    Article  Google Scholar 

  • Lewis, J., & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance– do students see any relationship? International Journal of Science Education, 22(2), 177–195.

    Article  Google Scholar 

  • Lewontin, R. C. (1991). Biology as ideology. The doctrine of DNA. New York: Harper Collins.

    Google Scholar 

  • Ministerio de Educación y Ciencia, Spain (MEC). (2007). Real Decreto 1631/2006 por el que se establecen las enseñanzas mínimas correspondientes a la Educación Secundaria Obligatoria (pp. 677–773). Boletín Oficial del Estado 5/01/2007.

    Google Scholar 

  • Mortimer, E. F. (2000). Microgenetic analysis and the dynamic of explanations in science classroom. Proceedings of the III Conference for Sociocultural Research, Campinas, Brazil [Cd-Rom].

    Google Scholar 

  • Mortimer, E., & Scott, P. (2003). Meaning making in secondary science classrooms. Buckingham, UK: Open University Press.

    Google Scholar 

  • Moscovici, S. (1961–1976). La psychanalyse, son image et son public (2nd ed.). Paris: PUF.

    Google Scholar 

  • Puig, B., & Jiménez-Aleixandre, M. P. (2010a). What do 9th grade students consider as evidence for or against claims about genetic differences in intelligence between black and white “races”? In M. Hammann, A. J. Waarlo, & K Th Boersma (Eds.), The nature of research in biological education (pp. 137–151). Utrecht, the Netherlands: University of Utrecht.

    Google Scholar 

  • Puig, B., & Jiménez-Aleixandre, M. P. (2010b). Students understanding about evidence for evolution. Paper presented at the ERIDOB conference, Braga, Portugal.

    Google Scholar 

  • Sensevy, G. (2007). Des categories pour décrire et comprendre l’action didactique. In G. Sensevy & A. Mercier (Eds.), Agir ensemble: Élements de théorisation de l’action conjointe du professeur et des élevès (pp. 13–49). Rennes, France: Presses Universitaires de Rennes.

    Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Google Scholar 

  • Stewart, J. (1983). Student problem solving in high school genetics. Science Education, 67, 523–540.

    Article  Google Scholar 

  • Tiberghien, A. (2008). Foreword. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. ix–xv). Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Tiberghien, A., Vince, J., & Gaidioz, P. (2009). Design-based research: Case of a teaching sequence on mechanics. International Journal of Science Education, 31(17), 2275–2314.

    Article  Google Scholar 

  • Toulmin, S. (1972). Human understanding: Vol. 1. The collective use and development of ­concepts. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Tsui, C. Y., & Treagust, D. F. (2007). Understanding genetics: Analysis of secondary students’ conceptual status. Journal of Research in Science Teaching, 44(2), 205–235.

    Article  Google Scholar 

  • Venville, G., & Donovan, J. (2005). Searching for clarity to teach the complexity of the gene concept. Teaching Science, 51(3), 20–22.

    Google Scholar 

Download references

Acknowledgments

Work supported by the Spanish Ministry of Science and Innovation, code EDU2009–13890-C02–01. Blanca Puig’s work supported by a University of Santiago de Compostela predoctoral grant, partly funded by S-TEAM (Science Teacher Education Advanced Methods), code SIS-CT-2009–234870, project financed by the European Union, 7th Framework Program. The authors thank Troy Sadler for his helpful suggestions to the first draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca Puig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Puig, B., Jiménez-Aleixandre, M.P. (2011). Different Music to the Same Score: Teaching About Genes, Environment, and Human Performances. In: Sadler, T. (eds) Socio-scientific Issues in the Classroom. Contemporary Trends and Issues in Science Education, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1159-4_12

Download citation

Publish with us

Policies and ethics