Different Music to the Same Score: Teaching About Genes, Environment, and Human Performances

  • Blanca PuigEmail author
  • María Pilar Jiménez-Aleixandre
Part of the Contemporary Trends and Issues in Science Education book series (CTISE, volume 39)


There is agreement within the science education community on the contributions of argumentation about socio-scientific issues (SSI) to scientific literacy and to the development of critical thinking (Kolstø, 2006). SSI involves scientific arguments in addition to political, personal or ethical questions about what action to choose (Kolstø, 2006). It is suggested that argumentation about SSI makes scientific learning meaningful, as it provides a context that connects science with everyday problems where citizens are expected to make decisions, and requires taking an active role to solve controversies. Argumentation in these contexts involves not only applying scientific knowledge, but also developing an independent opinion in order to critically examine scientific claims and arguments, in other words, becoming a critical thinker (Jiménez-Aleixandre & Puig, 2010).


Pedagogical Content Knowledge Scientific Practice Social Implication Teaching Sequence Citizenship Education 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work supported by the Spanish Ministry of Science and Innovation, code EDU2009–13890-C02–01. Blanca Puig’s work supported by a University of Santiago de Compostela predoctoral grant, partly funded by S-TEAM (Science Teacher Education Advanced Methods), code SIS-CT-2009–234870, project financed by the European Union, 7th Framework Program. The authors thank Troy Sadler for his helpful suggestions to the first draft.


  1. Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanations. Science Education, 93, 26–55.CrossRefGoogle Scholar
  2. Bourdieu, P., & Passeron, J.-C. (1970). La reproduction. Eléments pour une théorie du système d’enseignement. Paris: Les Éditions de Minuit. Translated as: Reproduction in education, society and culture. London: Sage, 1977.Google Scholar
  3. Brousseau, G. (1998). Théorie des situations didactiques. Grenoble, France: La Pensée Sauvage.Google Scholar
  4. Chevallard, Y. (1991). La transposition didactique [Didactical transposition] (2nd ed.). Grenoble, France: La Pensée Sauvage.Google Scholar
  5. Cuvier, G. (1817). Extrait d’observations faites sur le cadavre d’une femme connue à Paris et à Londres sous le nom de Vénus Hottentotte. Mémoires du Muséum d’Histoire naturelle, 3, 259–274.Google Scholar
  6. Diehl, D., & Donnelly, M. P. (2008). Inventors and impostors. How history forgot the true heroes of invention and discovery. Richmond: Crimson.Google Scholar
  7. Dixon, R. (1982). Take two people. A genetics teaching kit. Journal of Biological Education, 16(4), 229–230.CrossRefGoogle Scholar
  8. Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ understandings of molecular genetics. Journal of Research in Science Teaching, 44(7), 938–959.CrossRefGoogle Scholar
  9. Duncan, R. G., Rogat, A. D., & Yarden, A. (2009). A learning progression for deepening students’ understanding of modern genetics across the 5th–10th grades. Journal of Research in Science Teaching, 46(6), 655–674.CrossRefGoogle Scholar
  10. Gelbart, H., & Yarden, A. (2006). Learning genetics through an authentic research simulation in bioinformatics. Journal of Biological Education, 40(3), 107–112.CrossRefGoogle Scholar
  11. Gould, J. (1981). The mismeasure of man. New York: W. W. Norton.Google Scholar
  12. Herrnstein, R. J., & Murray, C. (1994). The Bell curve. Intelligence and class structure in American life. New York: The Free Press.Google Scholar
  13. Jensen, A. (1969). How much can we boost IQ and scholastic achievement? Harvard Educational Review, 33, 1–123.Google Scholar
  14. Jiménez-Aleixandre, M. P. (2008). Designing argumentation learning environments. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 91–115). Dordrecht, the Netherlands: Springer.Google Scholar
  15. Jiménez-Aleixandre, M. P., & Federico-Agraso, M. (2009). Justification and persuasion about cloning: Arguments in Hwang’s paper and journalistic reported versions. Research in Science Education, 39(3), 331–347. doi:10.1007/s11165-008-9113-x.CrossRefGoogle Scholar
  16. Jiménez-Aleixandre, M. P., & Fernández, L. (2010, March 21–24). What are authentic practices? Analysis of students-generated projects in secondary. Paper presented at the NARST annual meeting, Philadelphia.Google Scholar
  17. Jiménez-Aleixandre, M. P., & Pereiro, C. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental management. International Journal of Science Education, 24(11), 1171–1190.CrossRefGoogle Scholar
  18. Jiménez-Aleixandre, M. P., & Puig, B. (2010). Argumentation, evidence evaluation and critical thinking. In B. Fraser, K. G. Tobin, & Mc Robbie (Eds.), Second international handbook of science education. Dordrecht, the Netherlands: Springer. In press.Google Scholar
  19. Jiménez-Aleixandre, M. P., & Puig, B. (2011). The role of justifications in integrating evidence in arguments: making sense of gene expression. Paper presented at the ESERA Conference, France: Lyon.Google Scholar
  20. Jiménez-Aleixandre, M. P., & Sanmartí Puig, N. (1995). The development of a new curriculum for secondary school in Spain: Opportunities for change. International Journal of Science Education, 17(4), 425–439.CrossRefGoogle Scholar
  21. Johnson, S. (1991). Food for thought. The cookie analogy. Center for Biology Education. Madison: University of Wisconsin. Downloaded April, 2010, from http
  22. Kaplan, C., & Llomovatte, S. (2009). Revisión del debate acerca de la desigualdad educativa en la sociología de la educación: la reemergencia del determinismo biológico. In S. Llomovatte & C. Kaplan (Eds.), Desigualdad educativa: la naturaleza como pretexto (pp. 9–21). Buenos Aires, Argentina: CEP.Google Scholar
  23. Knippels, M. C. (2002). Coping with the abstract and complex nature of genetics in biology ­education: The Yo-yo learning and teaching strategy (PhD dissertation, University of Utrecht, Utrecht, the Netherlands).Google Scholar
  24. Knippels, M. C. P. J., Waarloo, A. J., & Boersma, K Th. (2005). Design criteria for learning and teaching genetics. Journal of Biological Education, 39(3), 109–112.CrossRefGoogle Scholar
  25. Kolstø, S. D. (2006). Science students’ critical examination of scientific information related to socioscientific issues. Science Education, 90, 632–655.CrossRefGoogle Scholar
  26. Levy, R. S., Selles, S. E., & Ferreira, M. S. (2008). Examining the ambiguities of the human race concept in biology textbooks: Tensions between knowledge and values expressed in school knowledge. In M. Hamman et al. (Eds.), Biology in context: Learning and teaching for the twenty –  first century (pp. 338–346). London: University of London.Google Scholar
  27. Lewis, J., & Kattmann, U. (2004). Traits, genes, particles and information: Re-visiting students’ understandings f genetics. International Journal of Science Education, 26(2), 195–206.CrossRefGoogle Scholar
  28. Lewis, J., & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance– do students see any relationship? International Journal of Science Education, 22(2), 177–195.CrossRefGoogle Scholar
  29. Lewontin, R. C. (1991). Biology as ideology. The doctrine of DNA. New York: Harper Collins.Google Scholar
  30. Ministerio de Educación y Ciencia, Spain (MEC). (2007). Real Decreto 1631/2006 por el que se establecen las enseñanzas mínimas correspondientes a la Educación Secundaria Obligatoria (pp. 677–773). Boletín Oficial del Estado 5/01/2007.Google Scholar
  31. Mortimer, E. F. (2000). Microgenetic analysis and the dynamic of explanations in science classroom. Proceedings of the III Conference for Sociocultural Research, Campinas, Brazil [Cd-Rom].Google Scholar
  32. Mortimer, E., & Scott, P. (2003). Meaning making in secondary science classrooms. Buckingham, UK: Open University Press.Google Scholar
  33. Moscovici, S. (1961–1976). La psychanalyse, son image et son public (2nd ed.). Paris: PUF.Google Scholar
  34. Puig, B., & Jiménez-Aleixandre, M. P. (2010a). What do 9th grade students consider as evidence for or against claims about genetic differences in intelligence between black and white “races”? In M. Hammann, A. J. Waarlo, & K Th Boersma (Eds.), The nature of research in biological education (pp. 137–151). Utrecht, the Netherlands: University of Utrecht.Google Scholar
  35. Puig, B., & Jiménez-Aleixandre, M. P. (2010b). Students understanding about evidence for evolution. Paper presented at the ERIDOB conference, Braga, Portugal.Google Scholar
  36. Sensevy, G. (2007). Des categories pour décrire et comprendre l’action didactique. In G. Sensevy & A. Mercier (Eds.), Agir ensemble: Élements de théorisation de l’action conjointe du professeur et des élevès (pp. 13–49). Rennes, France: Presses Universitaires de Rennes.Google Scholar
  37. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.Google Scholar
  38. Stewart, J. (1983). Student problem solving in high school genetics. Science Education, 67, 523–540.CrossRefGoogle Scholar
  39. Tiberghien, A. (2008). Foreword. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. ix–xv). Dordrecht, the Netherlands: Springer.Google Scholar
  40. Tiberghien, A., Vince, J., & Gaidioz, P. (2009). Design-based research: Case of a teaching sequence on mechanics. International Journal of Science Education, 31(17), 2275–2314.CrossRefGoogle Scholar
  41. Toulmin, S. (1972). Human understanding: Vol. 1. The collective use and development of ­concepts. Princeton, NJ: Princeton University Press.Google Scholar
  42. Tsui, C. Y., & Treagust, D. F. (2007). Understanding genetics: Analysis of secondary students’ conceptual status. Journal of Research in Science Teaching, 44(2), 205–235.CrossRefGoogle Scholar
  43. Venville, G., & Donovan, J. (2005). Searching for clarity to teach the complexity of the gene concept. Teaching Science, 51(3), 20–22.Google Scholar

Copyright information

© Springer Science+Business Media B.V.  2011

Authors and Affiliations

  • Blanca Puig
    • 1
    Email author
  • María Pilar Jiménez-Aleixandre
    • 1
  1. 1.Department of Science EducationUniversity of Santiago de Compostela (USC)GaliciaSpain

Personalised recommendations