Skip to main content

Apoptosis

  • Chapter
  • First Online:
Cell Death in Mammalian Ovary

Abstract

Cell death is a fundamental physiological process involved in controlling the balance between proliferation and differentiation during embryonic development, and in the renewal of cellular tissue throughout adulthood. It is presently known that some alterations in this process modify the cellular behavior and can lead to different pathologies, such as certain cancers and neurodegeneration processes. Apoptosis is the best studied cell death, and it is considered as programmed type I cell death. This process is characterized by several morphological cellular changes where ­cellular shrinkage, chromatin condensation, nuclear fragmentation are included. The apoptosis is executed by a group of proteases, denominated caspases, which lead to the cellular characteristics of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APAF1:

Apoptotic protease activating factor 1

Bak:

Bcl-2 antagonist/killer

Bax:

Bcl-2-associated X protein

BH3:

Bcl-2-homology domain-3

Bid:

BH3-interacting-domain

CARD:

Caspases recruitment domain

ced-3:

Caenorhabditis elegans cell-death abnormality-3

DED:

Death effector domain

DISC:

Death-inducing signaling complex

FADD:

Fas associated death domain-containing protein

ICE:

Interleukin-1 converting enzyme

Mcl-1:

Myeloid cell leukemia-1

MOMP:

Mitochondrial outer-membrane permeabilization

PIDD:

p53-Indicible death domain

PUMA:

p53-Upregulated modulator of apoptosis

Smac/DIABLO:

Second mitochondrial activator of caspase/direct IAP-binding protein with low pI

tBID:

Truncated BID

TNFR:

TNF receptor

TNF:

Tumor necrosis factor

TRADD:

TNFR1-associated death domain

TRAIL:

TNF-related apoptosis-inducing ligand

XIAP:

X-linked inhibitor of apoptosis protein

References

  • Acehan D, Jiang X, Morgan DG et al (2009) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9(2):423–432

    Google Scholar 

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Alnemri ES, Livingston DJ, Nicholson DW et al (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171

    Article  PubMed  CAS  Google Scholar 

  • Artus C, Boujrad H, Bouharrour A (2010) AIF promotes chromatinolysis and caspase independent programmed necrosis by interacting with histone H2AX. EMBO J 29:585–1599

    Article  Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308

    Article  PubMed  CAS  Google Scholar 

  • Boatright KM, Renatus M, Scott FL et al (2003) A unified model for apical caspase activation. Mol Cell 11:529–541

    Article  PubMed  CAS  Google Scholar 

  • Buendia B, Santa-Maria A, Courvalin JC (1999) Caspase-dependent proteolysis of integral and peripheral proteins of nuclear membranes and nuclear pore complex proteins during apoptosis. J Cell Sci 112:1743–1753

    PubMed  CAS  Google Scholar 

  • Candé C, Cecconi F, Dessen P et al (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115:4727–4734

    Article  PubMed  Google Scholar 

  • Celeste Morley S, Sun GP, Bierer BE (2003) Inhibition of actin polymerization enhances commitment to and execution of apoptosis induced by withdrawal of trophic support. J Cell Biochem 88:1066–1076

    Article  PubMed  CAS  Google Scholar 

  • Chang HY, Yang X (2000) Proteases for cell suicide: functions and regulation of caspase. Microbiol Mol Biol Rev 64:821–846

    Article  PubMed  CAS  Google Scholar 

  • Cheng EH, Sheiko TV, Fisher JK et al (2003) VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301:513–517

    Article  PubMed  CAS  Google Scholar 

  • Cuconati A, White E (2002) Viral homologs of BCL-2: Role of apoptosis in the regulation of virus infection. Genes Dev 16:2465–2478

    Article  PubMed  CAS  Google Scholar 

  • Delettre C, Yuste VJ, Moubarak RS et al (2006) Identification and characterization of AIFsh2, a mitochondrial apoptosis inducing factor (AIF) isoform with NADH oxidase activity. J Biol Chem 281(27):18507–18518

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  PubMed  CAS  Google Scholar 

  • Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7:988–994

    Article  PubMed  CAS  Google Scholar 

  • Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–829

    CAS  Google Scholar 

  • Enari M, Hug H, Nagata S (1995) Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 375:78–81

    Article  PubMed  CAS  Google Scholar 

  • Enari M, Sakahira H, Yokoyama H et al (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    Article  PubMed  CAS  Google Scholar 

  • Fesik SW (2005) Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5:876–885

    Article  PubMed  CAS  Google Scholar 

  • Fricker SP (2010) Cysteine proteases as targets for metal-based drugs. Metallomics 2:366–377

    Article  PubMed  CAS  Google Scholar 

  • Giam M, Huang DC, Bouillet P (2008) BH3-only proteins and their roles in programmed cell death. Oncogene 27(Suppl 1):S128–S136

    Article  PubMed  CAS  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    Article  PubMed  CAS  Google Scholar 

  • Gurbuxani S, Schmitt E, Cande C et al (2003) Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 22:6669–6678

    Article  PubMed  CAS  Google Scholar 

  • Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-κB, inflammation and cancer. Nat Rev Cancer 10(8):561–74

    Article  PubMed  CAS  Google Scholar 

  • Huang DCS, Strasser A (2000) BH3-only proteins-essential initiators of apoptotic cell death. Cell 103:839–842

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann SH, Desnoyers S, Ottaviano Y et al (1993) Specific proteolytic cleavage of poly-(ADP-ribose) polymerase: An early marker of chemotherapy induced apoptosis. Cancer Res 53:3976–3985

    PubMed  CAS  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972a) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed  CAS  Google Scholar 

  • Kim MY, Zhang T, Kraus WL (2005) Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev 19:1951–1967

    Google Scholar 

  • Kothakota S, Azuma T, Reinhard C et al (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–298

    Article  PubMed  CAS  Google Scholar 

  • Kramer PH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795

    Article  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  PubMed  CAS  Google Scholar 

  • Kurosaka K, Takahashi M, Watanabe N et al (2003) Silent cleanup of very early apoptotic cells by macrophages. J Immunol 171:4672–4679

    PubMed  CAS  Google Scholar 

  • Levee MG, Dabrowska MI, Lelli JL et al (1996) Actin polymerization and depolimerization ­during apoptosis in HL-60 cells. Am J Physiol 271:1981–1992

    Google Scholar 

  • Liang H, Fesik SW (1997) Three-dimensional structures of proteins involved in programmed cell death. J Mol Biol 274:291–302

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Dai S, Zhu Y et al (2003) The structure of a Bcl-xL/Bim fragment complex: Implications for Bim function. Immunity 19(3):341–352

    Article  PubMed  CAS  Google Scholar 

  • Loeffler M, Daugas E, Susin SA et al (2001) Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor. FASEB J 15:758–767

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Lin SC, Huang Y et al (2007) XIAP induces NF-κB activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell 26:689–702

    Article  PubMed  CAS  Google Scholar 

  • Lucken-Ardjomande S, Martinou JC (2005) Regulation of Bcl-2 proteins and of the permeability of the outer mitochondrial membrane. C R Biol 328:616–631

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Green DR (1995) Protease activation during apoptosis: death by a thousand cuts? Cell 82:349–352

    Article  PubMed  CAS  Google Scholar 

  • Miramar MD, Costantini P, Ravagnan L et al (2001) NADH-oxidase activity of mitochondrial apoptosis inducing factor (AIF). J Biol Chem 276:16391–16398

    Article  PubMed  CAS  Google Scholar 

  • Modjtahedi N, Giordanetto F, Madeo F et al (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16:264–272

    Article  PubMed  CAS  Google Scholar 

  • Montague JW, Hughes FM Jr, Cidlowski JA (1997) Native recombinant cyclophilins A, B, and C degrade DNA independently of peptidylprolyl cistrans-isomerase activity. Potential roles of cyclophilins in apoptosis. J Biol Chem 272(10):6677–6684

    Google Scholar 

  • Muzio M, Chinnaiyan AM, Kischkel FC et al (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85:817–827

    Article  PubMed  CAS  Google Scholar 

  • Muzio M, Stockwell BR, Stennicke HR et al (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273(5):2926–2930

    Google Scholar 

  • Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    Article  PubMed  CAS  Google Scholar 

  • Nagata S, Goldstein P (1995) The Fas death factor. Science 267:1449–1456

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150:887–894

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N et al (2000) Caspase-12 mediates endoplasmic reticulum-­specific apoptosis and cytotoxicity by amyloid-b. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  • Otera H, Ohsakaya S, Nagaura Z et al (2005) Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J 24:1375–1386

    Article  PubMed  CAS  Google Scholar 

  • Prior FP, Salvesen SG (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384:201–232

    Article  Google Scholar 

  • Ramage P, Cheneval D, Chvei M et al (1995) Expression, refolding, and autocatalytic proteolytic processing of the interleukin-1 beta-converting enzyme precursor. J Biol Chem 270:9378–9383

    Article  PubMed  CAS  Google Scholar 

  • Ravagnan L, Roumier T, Kroemer G (2002) Mitochondria-the killer organelles and their weapons. J Cell Physiol 192:131–137

    Article  PubMed  CAS  Google Scholar 

  • Read SH, Baliga BC, Ekert P et al (2002) A novel Apaf-1-independent putative caspase-2 activation complex. J Cell Biol 159(5):739–745

    Google Scholar 

  • Ried SJ, Salvesen GS (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8:405–413

    Article  Google Scholar 

  • Ried SJ, Li W, Chao Y et al (2005) Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434:926–933

    Article  Google Scholar 

  • Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4:446–456

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez J, Lazebnik Y (1999) Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 13:3179–3184

    Article  PubMed  CAS  Google Scholar 

  • Rudel T, Bokoch GM (1997) Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276:1571–1574

    Article  PubMed  CAS  Google Scholar 

  • Rupinder SK, Gurpreet AK, Manjeet S (2007) Cell suicide and caspases. Vasc Pharmacol 46:383–393

    Article  CAS  Google Scholar 

  • Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 96:10964–10967

    Article  PubMed  CAS  Google Scholar 

  • Sandu C, Morisawa G, Wegorzewska I et al (2006) FADD self-association is required for stable interaction with an activated death receptor. Cell Death Differ 13:2052–2061

    Article  PubMed  CAS  Google Scholar 

  • Sattler M, Liang H, Nettesheim D et al (1997) Structure of Bcl-xL-Bak peptide complex: Recognition between regulators of apoptosis. Science 275:983–986

    Article  PubMed  CAS  Google Scholar 

  • Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407:784–788

    Article  PubMed  CAS  Google Scholar 

  • Schneider P, Tschopp J (2000) Apoptosis induced by death receptors. Pharm Acta Helv 74:281–286

    PubMed  CAS  Google Scholar 

  • Scott FL, Denault JB, Ried SJ et al (2005) XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J 24:645–655

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki EN, Chai J, Rigotti DJ et al (2003) Mechanism of XIAP-mediated inhibition of ­caspase-9. Mol Cell 11:519–527

    Article  PubMed  CAS  Google Scholar 

  • Stegh AH, Peter ME (2001) Apoptosis and caspases. Cardiol Clin 19:13–29

    Article  PubMed  CAS  Google Scholar 

  • Stennicke HR, Salvesen GS (1999) Catalytic properties of the caspases. Cell Death Differ 6:1054–1059

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Cai M, Gunasekera AH et al (1999) NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401:818–822

    Article  PubMed  CAS  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: Coregulation of dimer formation and intracellular localization. Cell 103:645–654

    Article  PubMed  CAS  Google Scholar 

  • Tinel A, Tschopp J (2004) The PIDDosome, a protein complex implicated in activation of ­caspase-2 in response to genotoxic stress. Science 304:843–846

    Article  PubMed  CAS  Google Scholar 

  • Tosello-Trampont AC, Nakada-Tsukui K, Ravichandran KS (2003) Engulfment of apoptotic cells is negatively regulated by Rho-mediated signaling. J Biol Chem 278:49911–49919

    Article  PubMed  CAS  Google Scholar 

  • Upton JP, Valentijn AJ, Zhang L et al (2007) The N-terminal conformation of Bax regulates cell commitment to apoptosis. Cell Death Differ 14:932–942

    PubMed  CAS  Google Scholar 

  • Valentijn AJ, Metcalfe AD, Kott J et al (2003) Spatial and temporal changes in Bax subcellular localization during anoikis. J Cell Biol 162:599–612

    Article  PubMed  CAS  Google Scholar 

  • Vaux DL, Silke J (2005) IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 6:287–297

    Article  PubMed  CAS  Google Scholar 

  • Wei MC, Zong WX, Cheng EH (2001) Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  PubMed  CAS  Google Scholar 

  • Wen LP, Fahrni JA, Troie S et al (1997) Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem 272:26056–26061

    Article  PubMed  CAS  Google Scholar 

  • Willis SN, Fletcher JI, Kaufmann T et al (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–859

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    Article  PubMed  CAS  Google Scholar 

  • Yamin TT, Ayala JM, Miller DK (1996) Activation of the native 45-kDa precursor form of ­interleukin-1-converting enzyme. J Biol Chem 271:13273–13282

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Fang S, Jensen JP et al (2000) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 28:874–877

    Article  Google Scholar 

  • Yuste VJ, Moubarak RS, Delettre C et al (2005) Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release. Cell Death Differ 12:1445–1448

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Wang X, Deinum J (2007) Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. J Exp Med 204:1741–1748

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa Escobar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Escobar, M.L., Vázquez-Nin, G.H., Echeverría, O.M. (2011). Apoptosis. In: Cell Death in Mammalian Ovary. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1134-1_4

Download citation

Publish with us

Policies and ethics