Skip to main content

Embryonic Development of the Ovary, Sexual Reproduction and Meiosis

  • Chapter
  • First Online:
Book cover Cell Death in Mammalian Ovary

Abstract

Sex first evolved in the common ancestor of all eukaryotes some two billons years ago. Fertilization is the union of two haploid gametes of different sex; the resulting diploid cell is the zygote. In mammalian species gametes are derived from precursors termed primordial germ cells (PGCs). Specification of the germline occurs through: (1) repression of somatic differentiation; (2) reacquisition of ­potential pluripotency; (3) genome wide epigenetic reprogramming. In several mammals the maintenance of germ cell linage is not due to a preformed “germ plasma”, but is induced by environmental signals. In mammals PGCs originate in extraembryonic region and eventually move to gonadal ridges, located in the medial part of the urogenital ridge. Observations and experimental evidence demonstrate that PGCs move actively from the hindgut to the gonadal ridges. However, some observations suggest that most displacements of these cells may be explained by global growth movements. In most mammals sex determination is genetically controlled by the presence or absence of Y chromosome and the expression of gene Sry. However, the ovary differentiation requires in addition the action of a precise gene cascade. The main process that marks PCGs/oogonia sex differentiation within fetal ovary is the beginning of meiosis. During the progression of the first meiotic prophase many germ cells are eliminated, around 70% in mice, rats and humans. Prenatal development of the follicles is regulated by a complex interplay of hormones produced by the hypophysis (FSH, LH), and paracrine regulatory factors produced by the oocytes and the surrounding somatic cells. Epigenetic signals are covalent modifications of histones or DNA that convey a specific “meaning” to the stretch of chromatin on which they are found. Frequently they induce changes in chromatin conformation and gene expression. Pluripotent embryonic germ cells are capable of giving rise to all tissues, thus they must be able to reorganize their mechanisms of gene regulation to allow multiple lines of cell differentiation. Besides epigenetic modifications regulate X inactivation/reactivation in the female embryo and mark the paternal and maternal genome of germ cells, making the expression of a group of genes monoallelic, crucial for embryo development termed for modification such as “imprinted” genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht-Buechler G (1976) Filopodia spreading 3 T3 cells: do they have a substrate-exploring function? J Cell Biol 69:275–286

    Article  Google Scholar 

  • Ancelin K, Lange U, Hajkova P et al (2006) Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat Cell Biol 8:623–630

    Article  PubMed  CAS  Google Scholar 

  • Anttonen M (2005) Ovarian development, function, and granulosa cell tumorigenesis: role of GATA transcription factors and anti-Müllerian hormone. Academic Dissertation. Medical Faculty of the University of Helsinki, Finland

    Google Scholar 

  • Baker TG, Eastwood J (1983) Origin and differentiation of germ cells in man. In: Hilsher W (ed) Problems of the Keimbahn. Bibliotheca Anatomica, No. 24, Karger, Basel

    Google Scholar 

  • Baltus AE, Menke D, Hu YCh et al (2006) In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet 38:1430–1434

    Article  PubMed  CAS  Google Scholar 

  • Barrios F, Filipponi D, Pellegrini M (2010) Opposing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. J Cell Sci 123:871–880

    Article  PubMed  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  • Borts RH (2009) The New Yeast Is a Mouse. PLoS Biol 7(5):e1000106. doi:10.1371/journal.pbio.1000106

    Article  Google Scholar 

  • Borum K (1961) Oogenesis in the mouse. A study of the origin of the mature ova. Exp Cell Res 45:39–47

    Article  Google Scholar 

  • Bounoure L (1950) Sur le développement sexuel des glandes génital de la grenouille en l’absence des gonocytes. Arch Anat Microscop Morphol Exp 39:247–256

    Google Scholar 

  • Bowles J, Koopman P (2007) Retinoic acid, meiosis and germ cells fate in mammals. Develop 134:3401–3411

    Article  CAS  Google Scholar 

  • Bowles J, Knight D, Smith Ch et al (2006) Retinoid signaling determines germ cell fate in mice. Science 312:596–600

    Article  PubMed  CAS  Google Scholar 

  • Brennan J, Capel B (2004) One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 5:509–521

    Article  PubMed  CAS  Google Scholar 

  • Buehr M (1997) The primordial germ cells of mammals: some current perspectives. Exp Cell Res 232:194–207

    Article  PubMed  CAS  Google Scholar 

  • Bullejos M, Koopman P (2004) Germ cells enter meiosis in a rostro-caudal wave during development of the mouse ovary. Mol Reprod Dev 68(4):422–428

    Article  Google Scholar 

  • Chang H, Brown Ch, Matzuk M (2002) Genetic analysis of the mammalian transforming growth factor-ß superfamily. Endocr Rev 23:787–823

    Article  PubMed  CAS  Google Scholar 

  • Cohen PE, Pollack SE, Pollard JW (2006) Genetic analysis of chromosome pairing, recombination, and cell cycle control during first meiotic prophase in mammals. Endocr Rev 27:398–426

    Article  PubMed  CAS  Google Scholar 

  • Cummings A, Kavlock R (2004) Function of sexual glands and mechanism of sex differentiation. J Toxicol Sci 29:167–178

    Article  PubMed  CAS  Google Scholar 

  • De Felici M, Scaldaferri M, Lobascio M et al (2004) Experimental approaches to the study of primordial germ cell lineage and proliferation. Hum Reprod 10:197–206

    Google Scholar 

  • Di Carlo A, De Felici M (2000) A role for E-cadherin in mouse primordial germ cell development. Dev Biol 226(2):209–219

    Article  Google Scholar 

  • Dolci S, Pesce M, De Felici M (1993) Combined action of stem cells factor, leukemia inhibitory factor and cAMP on in vitro production of mouse primordial germ cells. Mol Reprod Dev 35:35–139

    Article  Google Scholar 

  • Dudley B, Runyan Ch, Takeuchi Y et al (2007) BMP signaling regulates PGC numbers and ­motility in organ culture. Mech Develop 124:68–77

    Article  CAS  Google Scholar 

  • Eguizabal C, Boyano M, Díez-Torre A et al (2007) Interleukin-2 induces proliferation of mouse primordial germ cells in vitro. Int Dev Biol 51:731–738

    Article  CAS  Google Scholar 

  • Fan QQ, Petes TD (1996) Relationship between nuclease-hypersensitive sites and meiotic ­recombination hot spots activity at the HIS4 locus of Saccharomyces cerevisae. Mol Cell Biol 16:2037–2043

    PubMed  CAS  Google Scholar 

  • Farini D, La Sala G, Tedesco M et al (2007) Chemoattractant action and molecular signaling pathways of Kit ligand on mouse primordial germ cells. Dev Biol 306(2):572–583

    Article  Google Scholar 

  • Fleischman R (1993) From white spots to stem cells: the role of kit receptor in mammalian ­development. Trends Genet 9:285–290

    Article  PubMed  CAS  Google Scholar 

  • Freeman B (2003) The active migration of germ cells in the embryos of mice and men is a myth. Reproduction 125:635–643

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Davidson WK, Wahls WP (2009) Phosphorylation-independent regulation of ­Atf1-promoted meiotic recombination by stress activated, p38 kinase Spc1 of fission yeast. Plos One 4(5): e5533. doi:10.1371/journal.pone.0005533

    Google Scholar 

  • Godin I, Wylie C (1991) TGF beta 1 inhibits proliferation and has a chemotropic effect on mouse germ cell in culture. Development 113:1451–1457

    PubMed  CAS  Google Scholar 

  • Godin I, Wylie C, Heasman J (1990) Genital ridges exert long range effects on mouse primordial germ cells number and direction of migration in culture. Development 108:357–363

    PubMed  CAS  Google Scholar 

  • Gómez Y, Velázquez P, Peralta-Delgado I et al (2001) Follicle-stimulating hormone regulates steroidogenic enzymes in cultured cells of the chick embryo ovary. Gen Comp Endocrinol 121:305–315

    Article  PubMed  Google Scholar 

  • Grey C, Baudat F, Massy B (2009) Genome-wide control of the distribution of meiotic recombination. PLoS Biol 7:e1000035. doi:10.1371/journal.pbio.1000035

    Article  Google Scholar 

  • Guigon CJ, Magre S (2006) Contribution of germ cells to the differentiation and maturation of the ovary: insights from models of germ cell depletion. Biol Reprod 74:450–458

    Article  PubMed  CAS  Google Scholar 

  • Gustafson T, Wolpert L (1963) The cellular basis of morphogenesis and sea urchin development. Intern Rev Cytol 15:139–214

    Article  CAS  Google Scholar 

  • Hajkova P, Erhard S, Lane N et al (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Develop 117:15–23

    Article  CAS  Google Scholar 

  • Hajkova P, Jeffries SJ, Lee et al (2010) Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329:78–82

    Article  PubMed  CAS  Google Scholar 

  • Hamer G, Wang H, Bolcun-Filas E et al (2008) Progression of meiotic recombination requires structural maturation of the central element of the synaptonemal complex. J Cell Sci 121:2445–2451

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Hernández A, Rincón-Arana H, Recillas-Targa F et al (2008) Differential distribution and association of repeat DNA sequences on the lateral element of the synaptonemal complex in rat spermatocytes. Chromosoma 117:77–87

    Article  PubMed  Google Scholar 

  • Hernández-Hernández A, Vázquez-Nin GH, Echeverría OM, Recillas-Targa F (2009) Chromatin structure contribution to the synaptonemal complex formation. Cell Mol Life Sci 66:1198–1208

    Article  PubMed  Google Scholar 

  • Kurimoto K, Yamaji M, Seki Y et al (2008) Specification of the germ cell lineage in mice: a process orchestrated by the PR-domain proteins, Blimp1 and Prdm14. Cell Cycle 7(22):3514–3518

    Article  Google Scholar 

  • Lees-Murdock D, Walsh C (2008) DNA methylation reprogramming in the germ line. Epigenetics 3:5–13

    Article  PubMed  Google Scholar 

  • Lees-Murdock D, De Felici M, Walsh C (2003) Methylation dynamics of repetitive DNA elements in the mouse germ cell lineage. Genomics 82:230–237

    Article  PubMed  CAS  Google Scholar 

  • Lees-Murdock D, Shovlin T, Gardiner T et al (2005) DNA methyltransferase expression in the mouse germ line during periods of de novo methylation. Dev Dyn 232:992–1002

    Article  PubMed  CAS  Google Scholar 

  • McLaren A (2003) Primordial germ cells in the mouse. Develop Biol 262:1–15

    Article  PubMed  CAS  Google Scholar 

  • McLaren A, Southee D (1997) Entry of mouse embryonic germ cells into meiosis. Dev Biol 187:107–113

    Article  PubMed  CAS  Google Scholar 

  • Merchant H (1975) Rat gonadal and ovarian organogenesis with and without germ cells. An ultrastructural study. Develop Biol 44:1–21

    Article  PubMed  CAS  Google Scholar 

  • Merchant LH, Alvarez BA (1986) The role of extracellular matrix and tissue topographic arrangement in mouse and rat primordial germ cell migration. In: Development and function of the reproductive organs. Eshkol A, Eckstein B, Dekel N, Peters H Eds. Tsafriri A, Serono Symposia Review 11. Raven Press, New York

    Google Scholar 

  • Merchant-Larios H (1985) Germ and somatic cell interactions during morphogenesis. In: Van Blerkom J, Motta PM (eds) Ultrastructure of reproduction. Martinus Nijhoff Pub., Printed in Netherlands

    Google Scholar 

  • Merchant-Larios H, Centeno B (1981) Morphogenesis of the ovary from sterile W/Wv mouse. Prog Clin Biol Res 59B:383–392

    PubMed  CAS  Google Scholar 

  • Miles DC, van den Bergen JA, Sinclair AH et al (2010) Regulation oft he female mouse germ cell cycle during entry into meiosis. Cell Cycle 9:1–11

    Article  Google Scholar 

  • Molyneaux K, Wylie C (2004) Primordial germ cell migration. Int J Dev Biol 48:537–544

    Article  PubMed  CAS  Google Scholar 

  • Molyneaux K, Stallock J, Schaible K, Wylie Ch (2001) Time-lapse analysis of living mouse germ cell migration. Devlop Biol 240:488–498

    Article  CAS  Google Scholar 

  • Myers S, Spencer C, Auton A et al. (2006) The distribution and causes of meiotic recombination in the human genome. Biochem Soc Transactions 34 part 4:526-530

    Google Scholar 

  • Navarro P, Chambers I, Karwacki-Neisius V et al (2008) Molecular coupling of Xist regulation and pluripotency. Science 321:1693–1695

    Article  PubMed  CAS  Google Scholar 

  • Nussbaum M (1880) Zur Differenzierung des Geschlechts im Tierreich. Arch Mikrosk Anat 80:1–121

    Article  Google Scholar 

  • Ohinata Y, Ohta H, Shigeta M et al (2009) A signaling principle for the specification of the germ cell lineage in mice. Cell 137(3):571–584

    Article  Google Scholar 

  • Okamura D, Kimura T, Nakano T et al (2003) Cadherin-mediated cell interaction regulates germ cell determination in mice. 130(26):6423–6430

    Article  Google Scholar 

  • Oktem O, Oktay K (2008) The Ovary. Anatomy and function throughout human life. Ann NY Acad Sci 1127:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ortiz R, Echeverría OM, Carlos A et al (2009) Cytochemical study of the distribution of DNA and RNA in the synaptonemal complex of guinea-pig and rat spermatocytes. Eur J Histochem 46:133–142

    Google Scholar 

  • Padoa IJ (1964) I differenziamento sessualle delle gonadi di rans esculenta rese sterili dell’irradiamento con ultravioletto delle mova indivise. Boll Zool 31:811–824

    Google Scholar 

  • Paland S, Lynch M (2006) Transition to asexuality in excess amino acid substitutions. Science 311:990–992

    Article  PubMed  CAS  Google Scholar 

  • Paredes A, García-Rudaz C, Kerr B et al (2005) Loss of synaptonemal complex protein-1, a ­synaptonemal complex protein, contributes to the initiation of follicular assembly in the ­developing rat ovary. Endocrinology 146:5267–5277

    Article  PubMed  CAS  Google Scholar 

  • Parrot J, Skinner M (1999) Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology 140:4262–4271

    Article  Google Scholar 

  • Parvanov ED, Ng SH, Petkov PM, Paigen K (2009) Trans-regulation of mouse meiotic recombination hotspots by Rcr1. PLoS Biol 7(2):e36

    Article  PubMed  Google Scholar 

  • Pepling ME (2006) From primordial germ cell to primordial follicle: mammalian female germ cell development. Rev Genesis 44:622–632

    Article  CAS  Google Scholar 

  • Pesce M, Xiangyuan W, Wolgemuth D, Schöler H (1998) Differential expression of the Oct-4 transcription factor during cell differentiation. Mech Develop 71:89–98

    Article  CAS  Google Scholar 

  • Peterson O (2007) Lecture Notes. Human Physiology. 5th ed. Blackwell Publishing Ltd

    Google Scholar 

  • Popp C, Dean W, Feng S et al (2010) Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463:1101–1105

    Article  PubMed  CAS  Google Scholar 

  • Saitou M, Barton S, Surani A (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418:293–300

    Article  PubMed  CAS  Google Scholar 

  • Sato E, Kimura N, Yokoo M et al (2006) Morphodynamics of ovarian follicles during oogenesis in mice. Microscop Res Tech 69:427–435

    Article  Google Scholar 

  • Spiller C, Wilhelm D, Koopman P (2009) Cell cycle analysis of fetal germ cells during sex ­differentiation in mice. Biol Cell. doi:10.1042/BC20090021

    PubMed  Google Scholar 

  • Tevosian S, Manuylov L (2008) To ß or not to ß: canonical ß-catenin signaling pathway and ­ovarian development. Dev Dyn 237:3672–3680

    Article  PubMed  CAS  Google Scholar 

  • Van den Hurk R, Zhao J (2005) Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 63:1717–1751

    Article  PubMed  Google Scholar 

  • Vázquez-Nin GH, Echeverría OM (1976) Ultrastructural study on the meiotic prophase nucleus of the rat. Acta Anat 96:218–231

    Article  PubMed  Google Scholar 

  • Vázquez-Nin GH, Echeverría OM, Ortiz R et al (2003) Fine structural cytochemical analysis of homologous chromosome recognition, alignment, and pairing in guinea pig spermatogonia and spermatocytes. Biol Reprod 69:1362–1370

    Article  PubMed  Google Scholar 

  • Vincent SD, Dunn NR, Sciammas R et al (2005) The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132(6):1315–1325

    Article  Google Scholar 

  • Wang N, Tilly JL (2010) Epigenetic status determines germ cell meiotic commitment in ­embryonic and postnatal mammalian gonads. Cell Cycle 15:339–49

    Article  Google Scholar 

  • Western PS, Miles DC, van den Bergen JA (2008) Dynamic regulation of mitotic arrest in fetal male germ cells. Stem Cells 26:339–347

    Article  PubMed  CAS  Google Scholar 

  • Willier BH (1950) Sterile gonads and the problem of the origin of germ cells in the chick embryo. Arch Anat Microsc Morphol Exp 39:269–273

    Google Scholar 

  • Wolffe AP, Jones PL, Wade PA (1999) DNA demethylation. Proc Natl Acad Sci U S A 96(11):5894–5896

    Google Scholar 

  • Yamaji M, Seki Y, Kurimoto K et al (2008) Critical function of Prdm14 for the establishment of the germ cell linage in mice. Nat Genet 40:1016–1022

    Article  PubMed  CAS  Google Scholar 

  • Ying Y, Zhao G (2001) Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cells generation in the mouse. Dev Biol 232:484–492

    Article  PubMed  CAS  Google Scholar 

  • Ying Y, Qi X, Zhao G (2001) Induction of primordial germ cells from murine epiblast by synergistic action of BMP-4 and BMP-8b signaling pathways. Proc Natl Acad Sci USA 98:7858–7862

    Article  PubMed  CAS  Google Scholar 

  • Zamboni L, Merchant H (1973) The fine morphology of mouse primordial germ cells in ­extragonadal locations. Am J Anat 137:299–335

    Article  PubMed  CAS  Google Scholar 

  • Zamboni L, Upadhyay S (1998) Germ cell differentiation in mouse adrenal glands. J Exp Zool 228(2):173–193

    Article  Google Scholar 

  • Zimmer C (2008) On the origin of sexual reproduction. Science 324:1254–1256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo H. Vázquez-Nin .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vázquez-Nin, G.H., Escobar, M.L., Echeverría, O.M. (2011). Embryonic Development of the Ovary, Sexual Reproduction and Meiosis. In: Cell Death in Mammalian Ovary. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1134-1_2

Download citation

Publish with us

Policies and ethics