Skip to main content

Follicular Atresia in Adult Animals

  • Chapter
  • First Online:
  • 661 Accesses

Abstract

Atresia is a hormonally controlled process in which the oocytes, ­granulosa cells and theca cells are involved in processes of cell death. Follicle development or atresia is regulated by the interplay of cell death and survival ­factors as gonadal steroids, cytokines and growth factors. Main families of ­molecules cell death or ­surviving are: caspases (cystein aspartate-specific proteases), all of them cleave substrates exclusively after asparagines residues. Kit gene encodes a receptor ­protein (KIT) a type III transmembrane tyrosine kinase receptor, which is involved in one of the ways of initiation of apoptotic process. Members of BCL-2 family are important regulators of apoptosis in the ovary. The ratio BCL-2 to BAX determines survival or death following an apoptotic stimulus. Members of TNF family have been implicated in follicular atresia in mammals. The oncosuppresive nuclear protein p53 is related to experimentally induced follicular atresia and granulosa cells apoptosis. Members of the insulin-like growth factor (IGF) system play a role in follicle development and a lower molecular weight member, IGFBP-5, is expressed during atresia. The main mechanism of follicular atresia is apoptosis, but also are present autophagy, necrosis, and a process with mixed features of apoptosis and autophagy in the same oocyte; all of them are programmed processes of cell death.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

FSH:

Follicle stimulant hormone

References

  • Amelsen JC (2002) On the origin, evolution, and nature of programmed cell death: a timeline of four billon years. Cell Death Differ 9:367–393

    Article  Google Scholar 

  • Baker TG (1963) A quantitative and cytological study of germ cells in human ovaries. Proc R Acad Sci Ser B 158:417–432

    Article  CAS  Google Scholar 

  • Bao Q, Shi Y (2007) Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ 14:56–65

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Brown Ch, Matzuk MM (2002) Genetic analysis of the mammalian transforming growth factor-β superfamily. Endocr Rev 23:787–823

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Yano T, Matsumi H et al (2005) Cross-talk between Fas/Fas Ligand system and nitric oxide in the pathway subserving granulosa cell apoptosis: a possible regulatory mechanism for ovarian follicle atresia. Endocrinology 146:808–815

    Article  PubMed  CAS  Google Scholar 

  • Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22:263–268

    Article  PubMed  CAS  Google Scholar 

  • Craig J, Orisaka M, Wang H et al (2007) Gonadotropin and intra-ovarian signals regulating follicle development and atresia: the delicate balance between life and death. Front Biosci 12:3628–3639

    Article  PubMed  CAS  Google Scholar 

  • Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22:8543–8567

    Article  PubMed  CAS  Google Scholar 

  • Degterev A, Huang Z, Boyce M et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  PubMed  CAS  Google Scholar 

  • Depalo R, Nappi L, Loverro G et al (2003) Evidence of apoptosis in human primordial and ­primary follicles. Hum Rep 18:2678–2682

    Article  Google Scholar 

  • Driancourt M-A, Reynaud K, Cortvrindt R et al (2000) Roles of KIT and KIT LIGAND in ovarian function. Rev Rep 5:143–152

    Article  CAS  Google Scholar 

  • Escobar ML, Echeverría OM, Ortiz R et al (2008) Combined apoptosis and autophagy, the process that eliminates the oocytes of atretic follicles in immature rats. Apoptosis 13:1253–1266

    Article  PubMed  CAS  Google Scholar 

  • Escobar ML, Echeverría OM, Sánchez-Sánchez L (2010) Análisis of different cell death processes of prepubertal rat oocytes in vitro. Apoptosis 15:511–526

    Article  PubMed  CAS  Google Scholar 

  • Flores-Pérez F, Rosas-Velazco C, Romano-Pardo MC et al (2005) Apoptosis y atresia folicular: un binomio esencial en el desarrollo ovárico. Veterinaria México 36:87–103

    Google Scholar 

  • Fortune JE (1994) Ovarian growth and development in mammals. Biol Reprod 50:225–232

    Article  PubMed  CAS  Google Scholar 

  • Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384:201–232

    Article  PubMed  CAS  Google Scholar 

  • Ghiotto F, Fais F, Bruno S (2010) BH3-only proteins: the death-puppeteer’s wires. Cytometry 77:11–21

    PubMed  Google Scholar 

  • Greenfeld ChR, Babus JK, Furth PA et al (2007) BAX is involved in regulating follicular growth, but is dispensable for follicle atresia in adult mouse ovaries. Reproduction 133:107–116

    Article  PubMed  CAS  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  • Hitomi J, Christofferson DE, Ng A et al (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    Article  PubMed  CAS  Google Scholar 

  • Hsueh AJ, Billig H, Tsafriri A (1994) Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev 15:707–724

    PubMed  CAS  Google Scholar 

  • Hu C-L, Cowan RG, Harman RM et al (2004) Cell cycle progression and activation of Akt kinase are required for insulin-like growth factor I-mediated suppression of apoptosis in granulose cells. Mol Endocrinol 18:326–338

    Article  PubMed  CAS  Google Scholar 

  • Huang EJ, Nocka KH, Buck J et al (1992) Differential expression and processing of two associated forms of the kit-ligand: KL-1 and KL-2. Mol Biol Cell 3:349–362

    PubMed  CAS  Google Scholar 

  • Hughes FM, Gorospe WC (1991) Biochemical identification of apoptosis (programmed cell death) in granulosa cells: evidence for a potential mechanism underlying follicular atresia. Endocrinology 129:2415–2422

    Article  PubMed  CAS  Google Scholar 

  • Hussein MR (2005) Apoptosis in the ovary: molecular mechanisms. Hum Reprod Update 11:162–178

    Article  PubMed  Google Scholar 

  • Jiang J-Y, Cheung CKM, Wang Y et al (2003) Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia. Front Biosci 8:222–237

    Article  Google Scholar 

  • Jiang X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem 73:87–106

    Article  PubMed  CAS  Google Scholar 

  • Johansson A, Appelqvist H, Nilsson C et al (2010) Regulation of apopotosis-associated lysosomal membrane permeabilization. Apoptosis 15:527–540

    Article  PubMed  CAS  Google Scholar 

  • Joyce IM, Pendola FL, Wigglesworth K et al (1999) Oocyte regulation of kit ligand expression in mouse ovarian follicles. Develop Biol 214:342–353

    Article  PubMed  CAS  Google Scholar 

  • Kim J-M, Yoon Y-D, Tsang B (1999) Involvement of the Fas/Fas ligand system in p53-mediated granulose cells apoptosis during follicular development and atresia. Endocrinology 140:2307–2317

    Article  PubMed  CAS  Google Scholar 

  • Koh PO, Kang SS, Choi WS et al (1999) Expression of Bcl-2 and Bax mRNAs during follicular development and atresia in the rat ovary. Kor J Anat 32:43–52

    Google Scholar 

  • Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  PubMed  CAS  Google Scholar 

  • Krysko DV, Diez-Fraile A, Criel G et al (2008) Life and death of female gametes during oogenesis and folliculogenesis. Apoptosis 13:1065–1087

    Article  PubMed  Google Scholar 

  • Lamkanfi M, Declercq W, Kalai M et al (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9:358–361

    Article  PubMed  CAS  Google Scholar 

  • Lamkanfi M, Kanneganti TD (2010) Caspase-7: a protease involved in apoptosis and inflammation. Int J Biochem Cell Biol 42:21–24

    Article  PubMed  CAS  Google Scholar 

  • Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced ­apoptosis before mitochondrial permeabilization. Science 297:1352–1354

    Article  PubMed  CAS  Google Scholar 

  • Maillet G, Benhaïm A, Mittre H et al (2003) Involvement of theca cells and steroids in the regulation of granulosa cell apoptosis in rabbit preovulatory follicles. Reproduction 125:709–716

    Article  PubMed  CAS  Google Scholar 

  • Manova K, Huang EJ, Angeles M et al (1993) The expression pattern of the c-kit ligand in gonads of mice supports a role for the c-kit receptor in oocyte growth and in proliferation of ­spermatogonia. Develop Biol 157:85–99

    Article  PubMed  CAS  Google Scholar 

  • Markström E, Svensson ECh, Shao R et al (2002) Survival factors regulating ovarian apoptosis-dependence on follicle differentiation. Reproduction 123:23–30

    Article  PubMed  Google Scholar 

  • Matikainen T, Perez GI, Zheng TS et al (2001) Caspase-3 gene knockout defines cell lineage specificity for programmed cell death signaling in the ovary. Endocrinology 142:2468–2480

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Perez GI, Maravei DV et al (1999) Targeted expression of Bcl-2 in mouse oocytes inhibits ovarian follicle atresia and prevents spontaneous and chemotherapy-induced oocytes apoptosis in vitro. Mol Endocrinol 13:841–850

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Perez GI, Paris F et al (2000) Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or shingosine-1-phosphate therapy. Nat Med 6:1109–1114

    Article  PubMed  CAS  Google Scholar 

  • Oltvai ZN, Milliman CL, Kormeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 27:609–619

    Article  Google Scholar 

  • O’Shea JD, Hay MF, Cran DG (1978) Ultrastructural changes in the theca interna during follicular atresia in sheep. J Reprod Fert 54:183–187

    Article  Google Scholar 

  • Orisaka M, Orisaka O, Jiang J-Y et al (2006) Growth and differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol Endocrinol 20:2456–2468

    Article  PubMed  CAS  Google Scholar 

  • Orisaka M, Tajima K, Tsang BK et al (2009) Oocyte-granulosa-theca cell interactions during preantral follicular development. J Ovarian Res. doi:10.1186/1757-2215-2-9

    Google Scholar 

  • Otomo T, Sakahira H, Uegaki K et al (2000) Structure of the heterodimeric complex between CAD domains of CAD and ICAD. Nat Struct Biol 7:658–662

    Article  PubMed  CAS  Google Scholar 

  • Park SM, Schickel R, Peter ME (2005) Nonapoptotic functions of FADD-binding death receptors and their signaling molecules. Curr Opin Cell Biol 17:610–616

    Article  PubMed  CAS  Google Scholar 

  • Perez GI, Robles R, Knudson CM et al (1999) Prolongation of ovarian lifespan into advanced chronological age by Bax-deficiency. Nat Genet 21:200–203

    Article  PubMed  CAS  Google Scholar 

  • Peter ME, Krammer PH (2003) The CD95 (APO-1/Fas) DISC and beyond. Cell Death Differ 10:26–35

    Article  PubMed  CAS  Google Scholar 

  • Read SH, Baliga BC, Ekert PG et al (2002) A novel Apaf-1-independent putative caspase-2 activation complex. J Cell Biol 159:739–745

    Article  PubMed  CAS  Google Scholar 

  • Rosales-Torres AM, Guzmán-Sánchez A (2008) Apoptosis in follicular atresia and luteal regresion. Téc Pecu Méx 46:159–182

    Google Scholar 

  • Sakamaki K, Yoshida H, Nishimura Y et al (1997) Involvement of fas antigen in ovarian follicular atresia and luteolysis. Mol Reprod Dev 47:11–18

    Article  PubMed  CAS  Google Scholar 

  • Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 96:10964–10967

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto M, Kagawa N, Morita M et al (2010) Changes in the expression of decoy receptor 3 in granulosa cells during follicular atresia in porcine ovaries. J Reproduct Dev [Epub ahead of print] PMID: 20519830

    Google Scholar 

  • Thornberry NA, Bull HG, Calacay JR et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774

    Article  PubMed  CAS  Google Scholar 

  • Thornberry NA, Rano TA, Peterson EP et al (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907–17911

    Article  PubMed  CAS  Google Scholar 

  • Tilly JL (1993) Ovarian follicular atresia: a model to study the mechanisms of physiological cell death. Endocrin J (Endocrine) 1:67–72

    Google Scholar 

  • Tilly JL (1996) The molecular basis of ovarian cell death during germ cell attrition, follicular atresia, and luteolysis. Front Biosci 1:d1–11

    PubMed  CAS  Google Scholar 

  • Tilly JL, Kowalski KI, Johnson AL et al (1991) Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 129:2799–2801

    Article  PubMed  CAS  Google Scholar 

  • Tilly JL, Tilly KI, Perez GI (1997) The genes of cell death and cellular susceptibility to apoptosis in the ovary: a hypothesis. Cell Death Differ 4:180–187

    Article  PubMed  CAS  Google Scholar 

  • Tinel A, Tschopp J (2004) The PIDDosome, a protein complex implicated in activation of ­caspase-2 in response to genotoxic stress. Science 304:843–846

    Article  PubMed  CAS  Google Scholar 

  • Vaskivuo TE, Anttonen M, Herva R et al (2001) Survival of human ovarian follicles from fetal to adult life: apoptosis-related proteins, and transcription factor GATA-4. J Clin Endocrinol Metab 86:3421–3429

    Article  PubMed  CAS  Google Scholar 

  • Vaux DL, Silke J (2003) Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun 304:499–504

    Article  PubMed  CAS  Google Scholar 

  • Willis SN, Fletcher JI, Kaufmann T et al (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–859

    Article  PubMed  CAS  Google Scholar 

  • Woo EJ, Kim YG, Kim MS et al (2004) Structural mechanism for inactivation and activation of CAD/DFF40 in the apoptotic pathway. Mol Cell 14:531–539

    Article  PubMed  CAS  Google Scholar 

  • Yang MY, Rajamahendran R (2000) Morphological and biochemical identification of apoptosis in small, medium, and large bovine follicles and the effects of follicle-stimulating hormone and insulin-like growth factor-I on spontaneous apoptosis in cultured bovine granulosa cells. Biol Reprod 62:1209–1217

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Shaham S, Ledoux S et al (1993) The C. elegans cell death gene Ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75:641–652

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo H. Vázquez-Nin .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vázquez-Nin, G.H., Escobar, M.L., Echeverría, O.M. (2011). Follicular Atresia in Adult Animals. In: Cell Death in Mammalian Ovary. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1134-1_13

Download citation

Publish with us

Policies and ethics