Skip to main content

Trends in Design Methods for Complex Heterogeneous Systems

  • Chapter
Design Technology for Heterogeneous Embedded Systems

Abstract

The design of heterogeneous Systems-on-Chips (SoC) in very deep submicron technologies has become a very complex task that has to bridge very high level system descriptions with low-level considerations due to technology defaults and variations, and increasing system and circuit complexity. This paper describes the major low-level issues, such as dynamic and static power consumption, temperature, technology variations, interconnect, Design for Manufacturing (DFM), reliability and yield, and their impact on high-level design, such as the design of multi-V dd , fault-tolerant, redundant or adaptive chip architectures. Some multi-processor based SoC (MPSoC) cases are also presented in three domains in which heterogeneity is large: wireless sensor networks, vision sensors and mobile TV. These examples also highlight the heterogeneous nature and the increasing complexity at circuit-level, with the extension from CMOS-only SoCs towards MEMS-and-CMOS SoCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. www.csem.ch

  2. Enz, C., et al.: WiseNET: an ultra-low power wireless sensor network solution. Computer 37, 62–70 (2004)

    Article  Google Scholar 

  3. Rabaey, J.: Managing power dissipation in the generation-after-next wireless systems. In: FTFC’99, Paris, France, June 1999

    Google Scholar 

  4. Vittoz, E.: Weak inversion for ultimate low-power logic. In: Piguet, C. (ed.) Low-Power Electronics Design. CRC Press, Boca Raton (2004). Chap. 16

    Google Scholar 

  5. Hanson, S., Zhai, B., Blaauw, D., Sylvester, D., Bryant, A., Wang, X.: Energy optimality and variability in subthreshold design. In: Intl. Symp. on Low Power Electronics and Design, pp. 363–365 (2006)

    Chapter  Google Scholar 

  6. Henzinger, T., Sifakis, J.: The discipline of embedded systems design. Computer 40, 32–40 (2007)

    Article  Google Scholar 

  7. Arm, C., Masgonty, J.-M., Piguet, C.: Double-latch clocking scheme for low-power I.P. Cores. In: PATMOS, Goettingen, Germany, September 13–15, 2000

    Google Scholar 

  8. Donno, M., Ivaldi, A., Benini, L., Macii, E.: Clock-tree power optimization based on RTL clock-gating. In: Proc. DAC’03, 40th Design Automation Conference (DAC’03), p. 622 (2003)

    Chapter  Google Scholar 

  9. Benini, L., et al.: A refinement methodology for clock gating optimization at layout level in digital circuits. J. Low Power Electron. 6(1), 44–55 (2010)

    Article  MathSciNet  Google Scholar 

  10. Arm, C., Masgonty, J.-M., Morgan, M., Piguet, C., Pfister, P.-D., Rampogna, F., Volet, P.: Low-power quad MAC 170 μW/MHz 1.0 V MACGIC DSP core. In: ESSCIRC, Montreux, Switzerland, Sept. 19–22, 2006

    Google Scholar 

  11. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305–327 (2003)

    Article  Google Scholar 

  12. Schuster, C., Nagel, J.-L., Piguet, C., Farine, P.-A.: Leakage reduction at the architectural level and its application to 16 bit multiplier architectures. In: PATMOS ’04, Santorini Island, Greece, September 15–17, 2004

    Google Scholar 

  13. Schuster, C., Piguet, C., Nagel, J.-L., Farine, P.-A.: An architecture design methodology for minimal total power consumption at fixed V dd and V th . J. Low Power Electron. 1(1), 1–8 (2005)

    Article  Google Scholar 

  14. Schuster, C., Nagel, J.-L., Piguet, C., Farine, P.-A.: Architectural and technology influence on the optimal total power consumption. In: DATE 2006, Munich, March 6–10, 2006

    Google Scholar 

  15. Zhai, B., Blaauw, D., Sylvester, D., Flautner, K.: Theoretical and practical limits of dynamic voltage scaling. In: DAC 2004, pp. 868–873 (2004)

    Chapter  Google Scholar 

  16. Hanson, S., Zhai, B., Blaauw, D., Sylvester, D., Bryant, A., Wang, X.: Energy optimality and variability in subthreshold design. In: International Symposium on Low Power Electronics and Design, ISLPED 2006, pp. 363–365 (2006)

    Chapter  Google Scholar 

  17. Kwong, J., et al.: A 65 nm Sub-Vt microcontroller with integrated SRAM and switched-capacitor DC-DC converter. In: ISSCC’08, pp. 318–319 (2008)

    Google Scholar 

  18. Piguet, C., Berweiler, G., Voirol, C., Dijkstra, E., Rijmenants, J., Zinszner, R., Stauffer, M., Joss, M.: ALADDIN: a CMOS gate-matrix layout system. In: Proc. of ISCAS 88, Espoo, Helsinki, Finland, p. 2427 (1988)

    Google Scholar 

  19. Haykel Ben Jamaa, M., Moselund, K.E., Atienza, D., Bouvet, D., Ionescu, A.M., Leblebici, Y., De Micheli, G.: Fault-tolerant multi-level logic decoder for nanoscale crossbar memory arrays. In: Proc. ICCAD’07, pp. 765–772

    Google Scholar 

  20. Peiris, V., et al.: A 1 V 433/868 MHz 25 kb/s-FSK 2 kb/s-OOK RF transceiver SoC in standard digital 0.18 μm CMOS. In: Int. Solid-State Circ. Conf. Dig. of Tech. Papers, Feb. 2005, pp. 258–259 (2005)

    Google Scholar 

  21. El-Hoiydi, A., Decotignie, J.-D., Enz, C., Le Roux, E.: WiseMAC, an ultra low power MAC protocol for the WiseNET wireless sensor network. In: SenSys’03, Los Angeles, CA, USA, November 5–7, 2003

    Google Scholar 

  22. Arm, C., Gyger, S., Masgonty, J.-M., Morgan, M., Nagel, J.-L., Piguet, C., Rampogna, F., Volet, P.: Low-power 32-bit dual-MAC 120 μW/MHz 1.0 V icyflex DSP/MCU core. In: ESSCIRC, Edinburgh, Scotland, UK, Sept. 15–19, 2008

    Google Scholar 

  23. http://www.abiliss.com

  24. Huang, Yu, et al.: Logic gates and computation from assembled nanowire building blocks. Science 294, 1313–1316 (2001)

    Article  Google Scholar 

  25. Schmid, A., Leblebici, Y.: Array of nanometer-scale devices performing logic operations with fault-tolerant capability. In: Fourth IEEE Conference on Nanotechnology IEEE-NANO (2004)

    Google Scholar 

  26. Ecoffey, S., Pott, V., Bouvet, D., Mazza, M., Mahapatra, S., Schmid, A., Leblebici, Y., Declercq, M.J., Ionescu, A.M.: Nano-wires for room temperature operated hybrid CMOS-NANO integrated circuits. In: Solid-State Circuits Conference, ISSCC 2005, 6–10 Feb. 2005, pp. 260–597, vol. 1 (2005)

    Chapter  Google Scholar 

  27. Frei, J., et al.: Body effect in tri- and pi-gate SOI MOSFETS. IEEE Electron Device Lett. 25(12), 813–815 (2004)

    Article  Google Scholar 

  28. Singh, N., et al.: High-performance fully depleted silicon nanowire (diameter < 5 nm) gate-all-around CMOS devices. IEEE Electron Device Lett. 27(5), 383–386 (2006)

    Article  Google Scholar 

  29. Kheradmand Boroujeni, B., et al.: Reverse Vgs (RVGS): a new method for controlling power and delay of logic gates in sub-VT regime. Invited talk at VLSI-SoC, Rhodes Island, Oct. 13–15, 2008

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the CSEM design teams that contributed to the SoC cases described above: Claude Arm, Flavio Rampogna, Silvio Todeschini, Ricardo Caseiro of the “SoC and Digital Group”, Pierre-François Ruedi, Edoardo Franzi, François Kaess, Eric Grenet, Pascal Heim, Pierre Alain Beuchat, of the “Vision Sensor Group”, D. Ruffieux, F. Pengg, M. Kucera, A. Vouilloz, J. Chabloz, M. Contaldo, F. Giroud, N. Raemy of the “RF and Analog IC Group” and E. Le Roux, P. Volet of the “Digital Radio Group”.

The authors also wish to acknowledge the EU project MAP2 partners (CRAFT-031984), i.e. OFFIS, ChipVision, Politecnico di Torino and BullDAST, for the design methodologies described in Sect. 3. The authors also acknowledge the industrial contributions from Hager and Semtech for the WiseNET SoC, and Abilis for the MACGIC-based SoC for mobile TV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Piguet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Piguet, C. et al. (2012). Trends in Design Methods for Complex Heterogeneous Systems. In: Nicolescu, G., O'Connor, I., Piguet, C. (eds) Design Technology for Heterogeneous Embedded Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1125-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1125-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1124-2

  • Online ISBN: 978-94-007-1125-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics