Skip to main content

Design Methods for Energy Harvesting

The Design of an Energy- and Data-Driven Platform

  • Chapter
Book cover Design Technology for Heterogeneous Embedded Systems

Abstract

An energy harvesting system is a particularly heterogeneous system, including energy harvester, battery, antenna, sensors and electronic blocks. The main issues for this kind of system are the energy converter efficiency for small power transfer, the load consumption (RF, sensors) in active and standby mode, and the embedded power management. This chapter is focused on the integration of an energy- and data-driven platform for autonomous systems. After a brief introduction on energy autonomy in microsystems, a global system description and specification are described. Then, three energy harvesting systems (mechanical vibrations, thermal flux, and solar radiation) with the associated electronics are presented. Finally, strategies for power management are introduced, with a focus on power path optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://en.wikipedia.org/wiki/Remote_control

  2. CATRENE Working Group on Energy Autonomous Systems: Energy autonomous systems: future trends in devices, technology, and systems, white paper

    Google Scholar 

  3. Fournier, J.-M., Salvi, C., Stochkolm, J.: Thermoélectricité: le renouveau grâce aux nanotechnologies. Techniques de l’ingénieur: Thermoélectricité (2006)

    Google Scholar 

  4. http://www.micropelt.com

  5. Lhermet, H., Condemine, C., Plissonnier, M., Salot, R., Audebert, P., Rosset, M.: Efficient power management circuit: from thermal energy harvesting to above-IC microbattery storage. In: ISSCC (2007)

    Google Scholar 

  6. Doms, I., Merken, P., Mertens, R.P., Van Hoof, C.: Capacitive power-management circuit for micropower thermoelectric generators with a 2.1 μW controller. In: ISSCC (2008)

    Google Scholar 

  7. Palumbo, G., Pappalardo, D., Gaibotti, M.: Charge-pump circuits: power-consumption optimization. IEEE Trans. Circuits Syst. 49(11), 1535–1542 (2002)

    Article  Google Scholar 

  8. Ker, M.-D., Chen, S.-L., Tsai, C.-S.: Design of charge pump circuit with consideration of gate-oxide reliability in low-voltage CMOS processes. IEEE J. Solid-State Circuits 41(5), 1100–1107 (2006)

    Article  Google Scholar 

  9. Despesse, G., Chaillout, J.J., Jager, T., Cardot, F., Hoogerwerf, A.: Innovative structure for mechanical energy scavenging. In: Solid-State Sensors, Actuators and Microsystems Conference, Transducers 2007, June 2007, pp. 895–898 (2007)

    Chapter  Google Scholar 

  10. Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003)

    Article  Google Scholar 

  11. Despesse, G., Jager, T., Chaillout, J.-J., Leger, J.-M., Basrour, S.: Design and fabrication of a new system for vibration energy harvesting. In: Research in Microelectronics and Electronics, 25–28 July 2005, vol. 1, pp. 225–228 (2005)

    Chapter  Google Scholar 

  12. Stocker, A.A.: Compact integrated transconductance amplifier circuit for temporal differentiation. In: Proceedings of the 2003 International Symposium on Circuits and Systems. ISCAS ’03, 25–28 May 2003, vol. 1, pp. I-201–I-204 (2003)

    Google Scholar 

  13. Kim, G., Kim, M.-K., Chang, B.-S., Kim, W.: A low-voltage, low-power CMOS delay element. IEEE J. Solid-State Circuits 31(7), 966–971 (1996)

    Article  Google Scholar 

  14. Randall, F., Jacot, J.: The performance and modelling of 8 photovoltaic materials under variable light intensity and spectra. EPFL, Lausanne, Switzerland

    Google Scholar 

  15. Torres, E.O., Rincon-Mora, G.A.: Long-lasting, self-sustaining, and energy-harvesting system-in-package (SiP) wireless micro-sensor solution. In: International Conference on Energy, Environment and Disasters (INCEED), Charlotte, NC (2005)

    Google Scholar 

  16. Randall, J.F., Jacot, J.: Renew. Energy 28, 1851–1864 (2003)

    Article  Google Scholar 

  17. Brunelli, D., Benini, L., Moser, C., Thiele, L.: An efficient solar energy harvester for wireless sensor nodes. In: EDAA (2008)

    Google Scholar 

  18. Torres, E.O., Min, C., Forghani-zadeh, H.P., Gupta, V., Keskar, N., Milner, L.A., Hsuan-I, P., Rincon-Mora, G.A.: SiP integration of intelligent, adaptive, self-sustaining power management solutions for portable applications. In: Proceedings of IEEE International Symposium on Circuits and Systems. ISCAS 2006 (2006)

    Google Scholar 

  19. Amelifard, B., Pedram, M.: Optimal selection of voltage regulator modules in a power delivery network. In: Design Automation Conference. DAC ’07, pp. 168–173 (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Condemine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Condemine, C., Willemin, J., Waltisperger, G., Christmann, JF. (2012). Design Methods for Energy Harvesting. In: Nicolescu, G., O'Connor, I., Piguet, C. (eds) Design Technology for Heterogeneous Embedded Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1125-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1125-9_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1124-2

  • Online ISBN: 978-94-007-1125-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics