Skip to main content

Subaqueous Landslides

  • Chapter
  • First Online:
Introduction to the Physics of Landslides

Abstract

On July 17, 1998 an earthquake shook the north-eastern shores of Papua New Guinea. The earthquake itself was not a particularly powerful one, and did not elicit much concern among the population, used to live on a seismic land. But after some minutes the sea level began to fall rapidly, unveiling the sea bottom along the shore. After short time, a first pulse of a series of three tsunami waves was travelling landward. Water towered 15 m above normal level, killing about 3,000 persons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bondevik S, Løvholt F, Harbitz C, Mangerud J, Dawson A, Svendsen JI (2005) The Storegga Slide tsunami – comparing field observations with numerical simulations. Mar Petroleoum Geol 22:195–208

    Article  Google Scholar 

  • Bourgeois J (2009) Geological effects and records of tsunamis. In: Robinson A, Bernard EN (eds) The sea, vol 15, Tsunamis. Harvard University Press, Cambridge, pp 53–91

    Google Scholar 

  • Dawson AG, Stewart I (2007) Tsunami deposits in the geological record. Sed Geol 200:166–183

    Article  Google Scholar 

  • De Blasio FV (2009) Rheology of a wet, fragmenting granular flow and the riddle of the anomalous friction of large rock avalancher. Granular Matter 11:179–184

    Article  Google Scholar 

  • De Blasio FV, Engvik L, Harbitz CB, Elverhøi A (2004) Hydroplaning and submarine debris flows. J Geophys Res 109:C01002. doi:10.1029/2002JC001714

    Article  Google Scholar 

  • De Blasio FV, Elverhøi A, Issler D, Harbitz CB, Bryn P, Lien R (2005) On the dynamics of subaqueous clay rich gravity mass flow – the giant Storegga slide, Norway. Mar Petrol Geol 22:179–186

    Article  Google Scholar 

  • De Blasio FV, Elverhøi A, Engvik LE, Issler D, Gauer P, Harbitz C (2006) Understanding the high mobility of subaqueous debris flows. Norw J Geol 86:275–284

    Google Scholar 

  • Dickens GR, O’Neil JR, Rea DK, Owen RM (1955) Dissociation of oceanic methane as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10:965–971

    Article  Google Scholar 

  • Edgers L, Karlsrud K (1982) Soil flows generated by submarine slides: case studies and consequences. Norwegian Geotech Inst Bull 143:1–11

    Google Scholar 

  • Elverhøi A, De Blasio FV, Butt FA, Issler D, Harbitz C, Engvik L, Solheim A, Marr J (2002) Submarine mass-wasting on glacially influenced continental slopes-processes and dynamics. In: Dowdeswell JA, CÓ Cofaigh (eds) Glacier-influenced sedimentation on high-latitude continental margins. Geological Society, London, pp 73–87, Special publication 203

    Google Scholar 

  • Elverhøi A, Breien H, De Blasio FV, Harbitz CB, Pagliardi M (2010) Submarine landslides and the importance of the initial sediment composition for run-out length and final deposit. Ocean Dyn 60:1027–1046. doi:10.1007//s10236-010-0317-z

    Article  Google Scholar 

  • Fine IV, Rabinovich AB, Bornhold BD, Thomson RE, Kulikov EA (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215:45–57

    Article  Google Scholar 

  • Gauer P, Elverhøi A, Issler D, De Blasio FV (2006) On numerical simulations of subaqueous slides: back-calculations of laboratory experiments of clay-rich slides. Norw J Geol 86:295–300

    Google Scholar 

  • Haflidason H, Lien R, Sejrup HP, Forsberg CF, Bryn P (2005) The dating and morphometry of the Storegga slide. Mar Petrol Geol 22:123–136

    Article  Google Scholar 

  • Hampton MA, Lee HJ, Locat J (1996) Submarine slides. Rev Geophys 34:33–59

    Article  Google Scholar 

  • Harbitz CB, Løvholt F, Pedersen G, Masson DG (2006) Mechanisms of tsunami generation by submarine landslides: a short review. Norw J Geol 86:249–258

    Google Scholar 

  • Hsu KJ (2002) Physics of sedimentology: textbook and reference. Springer, Berlin

    Google Scholar 

  • Huang X, Garcia MH (1998) A Herschel-Bulkley model for mud flow down a slope. J Fluid Mech 374:305–333

    Article  Google Scholar 

  • Ilstad T, De Blasio FV, Elverhøi A, Harbitz CB, Engvik L, Longva O, Marr J (2004) On the frontal dynamics and morphology of submarine debris flows. Mar Geol 213:481–497

    Article  Google Scholar 

  • Imran J, Harff P, Parker G (2001) A numerical model of submarine debris flows with graphical user interface. Comput Geosci 27(6):721–733

    Google Scholar 

  • Kuijpers A, Nielsen T, Akhmetzhanov A, de Haas H, Kenyon NH, van Weering TCE (2001) Late quaternary slope instability on the Faeroe margin: mass flow features and timing of events. Geo-Mar Lett 20:149–159

    Article  Google Scholar 

  • Levin B, Nosov M (2009) Physics of tsunami. Springer, Berlin

    Google Scholar 

  • Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212

    Article  Google Scholar 

  • Longva O, Janbu N, Blikra LH, Bøe R (2003) The 1996 Finneidfjord slide; seafloor failure and slide dynamics. In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Kluwer, Dordrecht, pp 531–538

    Chapter  Google Scholar 

  • Mohrig D, Whipple KX, Hondzo M, Ellis C, Parker G (1998) Hydroplaning of subaqueous debris flows. Geol Soc Am Bull 110:387–394

    Article  Google Scholar 

  • Schlichting W (1960) Boundary layer theory. Wiley, New York

    Google Scholar 

  • Urgeles R, Canals M, Masson DG, Gee MJR (2003) El Hierro: shaping of oceanic island by mass wasting. In: Mienert J, Weaver P (eds) European margin sediment dynamics. Springer, Berlin

    Google Scholar 

  • Vanneste M, Harbitz CB, De Blasio FV, Glimsdal S, Mienert J, Elverhøi A (2010) Hinlopen-Yermak landslide, Arctic Ocean-geomorphology, landslide dynamics and tsunami simulation. In: C Shipp (ed), SEPM 34 vol

    Google Scholar 

  • Nissen SE, Haskell NL, Steiner CT, Coterill KL (1999) Debris flow outrunner blocks, glide tracks, and pressure ridges identified on the Nigerian continental slope using 3-D seismic coherency. The Leading Edge Soc Explor Geophysicists 18(5):550–561

    Google Scholar 

  • Prior DB, Borhold BD, Coleman JM, Bryant WR (1982) Morphology of a submarine slide, Kitimat Arm, British Columbia. Geology 10:588–592

    Article  Google Scholar 

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Article  Google Scholar 

  • Masson DG, Canals M, Alonso B, Urgeles R, Hühnerbach, V (1998) The Canary debris flow: source area morphology and failure mechanisms. Sedimentology 45:411–432

    Article  Google Scholar 

  • Gauer P, Kvalstad TJ, Forsberg CF, Bryn P, Berg K (2005) The last phase of the Storegga slide: simulation of retrogressive slide dynamics and comparison with slide-scar morphology. Mar Petrol Geol 22:171–178

    Article  Google Scholar 

  • Gee MJR, Gawthorpe RL, Friedmann JS (2005) Giant striations at the base of a submarine landslide. Mar Geol 214:287–294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

De Blasio, F.V. (2011). Subaqueous Landslides. In: Introduction to the Physics of Landslides. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1122-8_9

Download citation

Publish with us

Policies and ethics