Skip to main content

Landslides in Peculiar Environments

  • Chapter
  • First Online:
Introduction to the Physics of Landslides

Abstract

Several disasters have been caused by landslides and rock avalanches falling onto natural or artificial water basins. The most studied case occurred in northern Italy on October 9th, 1963, when a volume of \( 270 \times {10^6}\;{{\hbox{m}}^3} \) of limestone collapsed into the artificially dammed Vaiont lake. The dam survived the impact, but water overtopped the dam by about 200 m; the ensuing water wave took 2,000 lives. Many investigations have been devoted to the Vaiont failure, mostly related to the hydraulic and mechanical history prior to the landslide. Probably the disaster could have been avoided if the danger of landslides falling at high speed in water reservoirs and their capability of displacing the water had been recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barla G, Dutto F, Mortara G (2000) Brenva glacier rock avalanche of 18 January 1997 on the Mount Blanc Range, Northwest Italy. Landslide News 13:2–5

    Google Scholar 

  • Bottino G, Chiarle M, Joly A, Mortara G (2002) Modelling rock avalanches and their relation to permafrost degradation in glacial environments. Permafrost Periglac Process 13:283–288

    Article  Google Scholar 

  • Bowden FP (1953) Proc R Soc Lond A 217:462

    Article  Google Scholar 

  • Broili L (1967) New knowledges on the geomorphology of the vaiont slide slip surfaces. Rock Mech Eng Geol 5:38–88

    Google Scholar 

  • Colbeck SC (1995) Pressure melting and ice skating. Am J Phys 65:488–492

    Article  Google Scholar 

  • Costard F, Forget F, Jomelli V, Mangold N, Peulvast J-P (2007) Debris flows in greenland and on Mars. In: Chapman M (ed) The geology of Mars: evidence from earth-based analogs. Cambridge University Press, Cambridge

    Google Scholar 

  • Datei C (2005) Vaiont. La storia idraulica. Libreria Internazionale Cortina, Padua (in Italian)

    Google Scholar 

  • De Blasio FV (2010) Submitted to: Icarus

    Google Scholar 

  • Erismann TH, Abele G (2001) Dynamics of rockslides and rockfalls. Springer, Berlin

    Google Scholar 

  • Fahnestock RK (1978) Little Tahoma Peak rockfall and avalanches, Mount Rainier, Washington, U.S.A. In: Voight B (ed) Rockslides and avalanches, 1. Elsevier, Amsterdam, pp 181–196

    Google Scholar 

  • Francis PW, Wadge G (1983) The Olympus Mons aureole: formation by gravitational spreading. J Geophys Res 88:8333–8344

    Article  Google Scholar 

  • Genevois R, Ghirotti M (2005) The 1963 Vaiont landslide. G Geol Appl 1:41–52

    Google Scholar 

  • Griswold J, Bulmer MH, Beller D, McGovers PJ (2008) An examination of Olympus Mons aureoles: 39th lunar and planetary science conference, LPI contribution No. 1391, 2239

    Google Scholar 

  • Harbitz CB, Pedersen G, Gjevik B (1993) Numerical simulations of large water waves due to landslides. J Hydraul Eng-ASCE 119:1325–1342

    Article  Google Scholar 

  • Harrison KP, Grimm RE (2003) Rheological constrains on martial landslides. Icarus 163:347–362

    Article  Google Scholar 

  • Hendron AJ, Patton FD (1985) The Vaiont slide, a geotechnical analysis based on new geologic observations of the failure surface. I, II technical reports GL-85-5, U.S. Army Eng. Waterways Experiment Station, Vicksburg, Massachusetts

    Google Scholar 

  • Hewitt K (2009) Rock avalanches that travel onto glaciers and related developments, Karakoram Himalaya, Inner Asia. Geomorphology 103:66–79

    Article  Google Scholar 

  • Hodges CA, Moore HJ (1979) The subglacial birth of Olympus Mons and its aureoles. J Geophys Res 84:8061–8074

    Article  Google Scholar 

  • Lejeunesse E, Mangeney-Castelnau C, Vilotte JP (2006) Spreading of a granular mass on a horizontal plane. Phys Fluids 16:2371–2381

    Article  Google Scholar 

  • Lopes RMC, Guest JE, Wilson CJ (1980) Origin of the Olympus Mons aureole and perimeter scarp. Moon Planets 22:221–234

    Article  Google Scholar 

  • Lucas A, Mangeney A (2007) Mobility and topographic effects for large Valles Marineris landslides on Mars. Geophys Res Lett 34:L1021

    Article  Google Scholar 

  • Lucchitta BK (1979) Landslides in Vallis Marineris, Mars. J Geophys Res 84:8097–8113

    Article  Google Scholar 

  • McCauley JM, Carr MH, Cutts JA, Hartmann WK, Masurski H, Milton DJ, Sharp RP, Wilhelms DE (1972) Preliminary mariner 9 report on the geology of Mars. Icarus 45:264–303

    Google Scholar 

  • McGovern PJ, Smith JR, Morgan JK, Bulmer MH (2004) Olympus Mons aureole deposits: new evidence for a flank failure origin. J Geophys Res 109:E08008

    Article  Google Scholar 

  • McSaveney M (1978) Sherman glacier rock avalanche, Alaska, U.S.A. In: Voight B (ed) Rockslides and avalanches, 1. Elsevier, Amsterdam, pp 197–258

    Google Scholar 

  • McSaveney M (2002) Recent rockfalls and rock avalanches in Mount Cook National Park, New Zealand. In: Evans SG, DeGraff JV (eds) Catastrophic landslides: effects, occurrence, and mechanisms. The Geological Society of America, Boulder, pp 35–70

    Google Scholar 

  • Morris EC (1981) Structure of Olympus Mons and its basal scarp. In: Paper presented to the 3rd international colloquium on Mars (abstract). Pasadena, pp 161–162

    Google Scholar 

  • Müller L (1964) The rock slide in the Vaiont valley. Rock Mech Eng Geol 2(3/4):148–212

    Google Scholar 

  • Murray B, Malin MC, Greeley R (1981) Earthlike planets. Freeman and Company, San Francisco

    Google Scholar 

  • Penner RA (2001) The physics of sliding cylinders and curling rocks. Am J Phys 69:332–339

    Article  Google Scholar 

  • Persson BNJ (2000) Sliding friction. Physical principles and applications. Springer, Berlin

    Google Scholar 

  • Plafker G, Ericksen GE (1978) Nevados Huascaran avalanches, Peru. In: Voight B (ed) Rockslides and avalanches, 1. Elsevier, Amsterdam, pp 277–314

    Google Scholar 

  • Rabinowicz E (1995) Friction and wear of materials. Wiley-Interscience, New York

    Google Scholar 

  • Schenk PM, Bulmer MH (1998) Origin of mountains on Io by thrust faulting and large-scale mass movements. Science 279:1514–1517

    Article  Google Scholar 

  • Semenza E (2001) La storia del Vaiont raccontata dal geologo che ha scoperto la frana. K-Flash, Ferrara (in Italian)

    Google Scholar 

  • Shreve RL (1966) Sherman landslide, Alaska. Science 154:1639–1643

    Article  Google Scholar 

  • Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modelling calibration of the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100:11–26

    Article  Google Scholar 

  • Tanaka KL (1985) Ice-lubricated gravity spreading of the Olympus Mons aureole deposits. Icarus 62:191–206

    Article  Google Scholar 

  • Tinti S, Pagnoni G, Zaniboni F, Bortolucci E (2003) Tsunami generation in Stromboli island and impact on the south-east Tyrrhenian coasts. Nat Hazards Earth Syst Sci 3:299–309

    Article  Google Scholar 

  • Tinti S, Pagnoni G, Zaniboni F (2005) The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through numerical simulation. Bull Volcanol 68:462–479

    Article  Google Scholar 

  • Tommasi P, Baldi P, Chiocci FL, Coltelli M, Marsella M, Pompilio M, Tomagnoli C (2006) The landslide sequence induced by the 2002 eruption at Stromboli volcano. Landslides 27:342–356

    Google Scholar 

  • Vardoulakis I (2002) Dynamic thermo-poro-mechanical analysis of catastrophic landslides. Geotechnique 52(3):157–171

    Article  Google Scholar 

  • Voight BE, Faust C (1982) Frictional heat and strength loss in some rapid slides. Geotechnique 32(1):43–54

    Article  Google Scholar 

  • Evans SG, Clague JJ (1988) Catastrophic rock avalanches in glacial environments. In: Proceedings 5th international symposium on landslides. Balkema, Rotterdam, pp 1153–1158

    Google Scholar 

  • Evans SG, Clague JJ, Woodsworth GJ, Hungr O (1989) The Pandemonium Creek rock avalanche, British Columbia. Can Geotech J 26:427–446

    Article  Google Scholar 

  • Hutchinson JN (2002) Chalk flows from the coastal cliffs of northern Europe. In: Evans SG, DeGraaf JV (eds) Catastrophic landslides: effects, occurrence, and mechanisms. Geol Soc Am Rev Eng Geol vol 55

    Google Scholar 

  • Vischer DL, Hager WH (1998) Dam hydraulics. Wiley, Chichester

    Google Scholar 

  • Watts P, Grilli ST (2003) Underwater landslide shape, motion, deformation and tsunami generation. Int Soc. Offshore Polar Eng 27:364–371

    Google Scholar 

  • Quantin C, Allemand P, Mangold N, Delacourt C (2004) Ages of Valles Marineris (Mars) landslides and implications for canyon history. Icarus 172:555–572

    Article  Google Scholar 

  • Weast RC (ed) (1989)Handbook of chemistry and physics, 56th edn. CRC press, Cleveland, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

De Blasio, F.V. (2011). Landslides in Peculiar Environments. In: Introduction to the Physics of Landslides. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1122-8_7

Download citation

Publish with us

Policies and ethics