Advertisement

Atoms of Mind pp 283-341 | Cite as

Theories of Consciousness

  • W. R. KlemmEmail author
Chapter
  • 910 Downloads

Abstract

The contemporary “fad” among neuroscientists is to look for esoteric mechanisms that could explain the near-universal belief that consciousness must be some kind of “emergent property” of brain. That is, it is widely assumed that consciousness ­cannot be explained from the first principles of neurobiology.

Keywords

Quantum Mechanics Spike Train Nerve Impulse Chaos Theory Probability Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baum, E. B. (2004). What is thought. Cambridge: MIT Press.Google Scholar
  2. Beck, F. (2008). Synaptic quantum tunneling in brain activity. NeuroQuantology, 6(2), 140–151.Google Scholar
  3. Beck, F., & Eccles, J. C. (1992). Quantum aspects of brain activity and the role of consciousness. Proceedings of the National Academy of Science, 89, 11357–11361.CrossRefGoogle Scholar
  4. Beck, F., & Eccles, J. C. (2003). Quantum processes in the brain. In N. Osaka (Ed.), Neural basis of consciousness (pp. 141–200). Amsterdam: John Benjamin.Google Scholar
  5. Binzegger, T., et al. (2005). Cortical architecture. In M. De Gregorio et al. (Eds.), BVAI 2005. LNCS, Vol. 3704, pp. 15–28. Berlin/Heidelberg: Springer.Google Scholar
  6. Burkhalter, A. (2008). Many specialists for suppressing cortical excitation. Frontiers in Neuroscience, 2, 155–167.PubMedCrossRefGoogle Scholar
  7. Buzsáki, G. (2006). Rhythms of the brain. New York: Oxford University Press.CrossRefGoogle Scholar
  8. Clark, W. R., & Grunstein, M. (2000). Are we hardwired? The role of genes in human behavior. New York: Oxford University Press.Google Scholar
  9. Conte, E. (2008). Testing quantum consciousness. NeuroQuantology, 6(2), 126–139.Google Scholar
  10. Douglas, R. J., & Martin, K. A. (2004). Neuronal circuits of the neocortex. Annual Review Neuroscience, 27, 419–451.CrossRefGoogle Scholar
  11. Doya, K., et al. (2007). Bayesian brain. Probabilistic approaches to neural coding. Cambridge: MIT Press.Google Scholar
  12. Dux, P. E., et al. (2007). Isolation of a central bottleneck of information processing with time-resolved fMRI. Neuron, 52(6), 1109–1120.CrossRefGoogle Scholar
  13. Folger, T. (2009). Is quantum mechanics tried true, wildly successful, and wrong? Science, 324, 1512–1513.PubMedCrossRefGoogle Scholar
  14. Freeman, W. J. (2000). How brains make up their minds. New York: Columbia University Press.Google Scholar
  15. Freeman, W. J. (2009). Consciousness, intentionality, and causality. In S. Pockett, W. P. Banks, & S. Gallagher (Eds.), In Does consciousness cause behavior? (pp. 73–105). Cambridge: MIT Press.Google Scholar
  16. Gilder, L. (2008). The age of entanglement. New York: A. A. Knopf.Google Scholar
  17. Gisin, N. (2009). Quantum nonlocality: how does nature do it? Science, 326, 1357–1358.PubMedCrossRefGoogle Scholar
  18. Grafman, J., & Wassermann, E. (1998). Transcranial magnetic stimulation can measure and modulate learning and memory. Neuropsychologia, 37(2), 159–167.CrossRefGoogle Scholar
  19. Greene, B. (2004). The fabric of the cosmos. New York: Vintage Books.Google Scholar
  20. Hamerhoff, S., & Penrose, R. (1996). Orchestrated objective reduction of quantum coherence in brain microtubules: the “Orch OR” model for consciousness. In S. R. Hameroff, A. W. Kaszniak, & A. C. Scott (Eds.), Toward a science of consciousness – The first Tucson discussions and debate (pp. 507–540). Cambridge: MIT Press.Google Scholar
  21. Hecht, D., Walsh, V., & Lavidor, M. (2010). Transcranial direct current stimulation facilitates decision making in a probabilistic guessing task. Journal of Neuroscience, 30(12), 4241–4245.PubMedCrossRefGoogle Scholar
  22. Izhikevich, E. M. (2007). Dynamical systems in neuroscience. Cambridge: MIT Press.Google Scholar
  23. Janssen, P., & Shadlen, M. N. (2005). A representation of the hazard rate of elapsed time in the macaque area LIP. Nature Neuroscience, 8, 234–241.PubMedCrossRefGoogle Scholar
  24. Johnson, J.S., Hamidi, M.X., and Postle, & B.R. (2009). It’s not a virtual lesion. Evaluating the effects of rTMS on neural activity and behavior. Program No. 92.6. Neuroscience Meeting Planner. Chicago: Society for Neuroscience [Online].Google Scholar
  25. Klemm, W. R. (1973). Typical electroencephalograms: ver­tebrates. In P. L. Altman & D. S. Dittmer (Eds.), Biology Data Book, Vol. II, 2nd Ed. (pp. 1254--1260). Federation of American Societies for Experimental Biology, Bethesda, MD.Google Scholar
  26. Klemm, W. R. (1993). Are there EEG correlates of animal thinking & feeling. Neuropsychobiology, 26, 151–165.CrossRefGoogle Scholar
  27. Klemm, W. R., & Vertes, R. (1990). Brainstem mechanisms of behavior. New York: Plenum.Google Scholar
  28. Koch, C. (2004). The quest for consciousness. A neurobiological approach. Englewood: Roberts & Company.Google Scholar
  29. Krasner, S. (Ed.). (1990). The ubiquity of chaos. Washington: Amer. Assoc. Advancement of Science.Google Scholar
  30. Kruglinski, S. (2009). The discover interview: Roger Penrose. Discover Magazine, September, pp. 54–57.Google Scholar
  31. Latham, P., & Pouget, A. (2007). Computing with population codes. In K. Doya et al. (Eds.), Bayesian brain. Probabilistic approaches to neural coding. Cambridge: MIT Press.Google Scholar
  32. LeDoux, J. (2002). Synaptic self. How our brains become who we are. New York: Viking.Google Scholar
  33. Lorenz, E. N. (1993). The essence of chaos. Seattle: University of Washington Press.CrossRefGoogle Scholar
  34. Molnár, G., et al. (2008). Complex events initiated by individual spikes in the human cerebral cortex. PLoS Biology, 6(9), e222. doi: 10.1371/journal.pbio.0060222 doi: dx.doi.org.PubMedCrossRefGoogle Scholar
  35. Nunez, P. L. (2010). Brain, mind, and the structure of reality. New York: Oxford University Press.CrossRefGoogle Scholar
  36. Platt, M. L., & Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400, 233–238.PubMedCrossRefGoogle Scholar
  37. Rabinovich, M., Huerta, R., & Laurent, G. (2008). Transient dynamics for neural processing. Science, 321, 48–50.PubMedCrossRefGoogle Scholar
  38. Ricciardi, L., & Umezawa, H. (1967). Brain and physics of many body problems. Kybernetik, 4, 44–48.PubMedCrossRefGoogle Scholar
  39. Schultz, W., et al. (2000). Reward processing in primate orbitofrontal cortex and basal ganglia. Cerebral Cortex, 10, 272–284.PubMedCrossRefGoogle Scholar
  40. Schulz, R., et al. (1995). Amnesia of the epileptic aura. Neurology, 45(2), 231–235.PubMedGoogle Scholar
  41. Somjen, G. G. (2005). Aristides Leão’s discovery of cortical spreading depression. Journal of Neurophysiology, 94, 2–4.PubMedCrossRefGoogle Scholar
  42. Song, D. (2008). Incompatibility between quantum theory and consciousness. NeuroQuantology, 6, 46–52.Google Scholar
  43. Stapp, H. (2007). Mindful universe: quantum mechanics and the participating observer. Berlin: Springer.Google Scholar
  44. Turin, L. (1996). A spectroscopic mechanism for primary olfactory reception. Chemical Senses, 21, 773–791.PubMedCrossRefGoogle Scholar
  45. Walsh, V., & Pascual-Leone, A. (2003). Transcranial magnetic stimulation. Cambridge: MIT Press.Google Scholar
  46. Wyart, V., & Sergent, C. (2009). The phase of ongoing EEG oscillations uncovers the fine temporal structure of conscious perception. Journal of Neuroscience, 29(41), 12839–12841.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.College of Veterinary Medicine and BiomeCollege StationUSA

Personalised recommendations