Skip to main content

Mesoscale Dynamics

What is it, can it be defined, and is it important?

  • Conference paper
Air Pollution Processes in Regional Scale

Part of the book series: NATO Science Series ((NAIV,volume 30))

  • 185 Accesses

Abstract

The use of the name mesoscale describing a class or a scale of motions has become common over the last decades. This gives the impression that the mesoscale is a well defined scale, however, when attempting to define it unambiguously, this turns out to be almost impossible. As a consequence mesoscale by itself is close to useless to describe something, unless more information is given. Still, motions on an intermediate scale exist, and often have a profound impact on local climate and on regional dispersion of air pollutants. For environmental modeling, motions on these intermediate scales must be properly resolved, since hardly any parameterizations exist. In fact, the very reason for this lack of parameterizations is the lack of a unique property that can be assigned to mesoscale. In modeling it is important to keep this ambiguity in mind, since the success may lie on designing simulations so that the important mesoscale circulations are resolved, and this may have to be done differently for different situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ligda, M.G.H. (1951) Radar storm observations, in Compendium of Meteorology, American Meteorolo-gical Society, Boston, pp. 1265–1282.

    Google Scholar 

  2. Huschke, R.E. (1959) Glossary of Meteorology, American Meteorological Society, Boston, pp. 638.

    Google Scholar 

  3. Bjeknes, J. and Solber, H. (1922) Life cycle of cyclones and the polar front theory of atmospheric circu-lation, Geophys. Publ. Norske Vidensk.-Akad. 3(1), 1–18.

    Google Scholar 

  4. Holton, J. (1992) An introduction to dynamic meteorology, Academic Press, San Diego, pp. 511.

    Google Scholar 

  5. Blackadar, A.K. (1957) Boundary layer wind maxima and their significance for the growth of nocturnal inversions, Bull. Amer. Meteor. Soc. 38, 283–290.

    Google Scholar 

  6. Atkinson, B.W. (1981) Meso-scale atmospheric circulations, Academic Press, London, pp 495.

    Google Scholar 

  7. Emanuel, K.A. (1986) Overview and definition of mesoscale meteorology, in Ray, P.S. (ed.) Mesoscale meteorology and forecasting, American Meteorological Society, Boston, pp. 793.

    Google Scholar 

  8. Wipperman, F. (1981) The applicability of several approximations in mesoscale modeling-a linear ap-proach, Contrib. Atmos. Phys. 54, 298–308.

    Google Scholar 

  9. Pielke, R. (1984) An introduction to mesoscale modeling, Academic Press, Orlando, pp. 612.

    Google Scholar 

  10. Thunis, P. and Bornsteain, R. (1996) Hierachy of mesoscale flow assumption and equations, J. Atmos. Sci. 53, 380–397.

    Article  Google Scholar 

  11. Estoque, M.A. (1961) A theoretical investigation of the sea-breeze, Q. J. R. Meteorol. Soc. 87, 136–146.

    Article  Google Scholar 

  12. Banta, R.M., Olivier, L.D. and Levinson, D.H. (1993) Evolution of the Monterey Bay sea breeze as observed by puled doppler lidar, J. Atmos. Sci. 50, 3959–3982.

    Article  Google Scholar 

  13. Banta, R.M. (1995) Sea breezes deep and shallow on the California coast, Mon. Wea. Rev. 123, 3614–3622.

    Article  Google Scholar 

  14. Tijm, A.B.C., vanDelden, A.J. and Holtslag, A.A.M. (1999) The role of sound waves in sea-breeze initialisation, Q. J. R.. Meteorol. Soc. 125, 1997–2018.

    Article  Google Scholar 

  15. Yang, X. (1991) A study of nonhydrostatic effects in idealized sea breeze systems, Bound.-Layer Meteor. 54, 183–208.

    Article  Google Scholar 

  16. Ziomas, I.C. (1998) The Mediterranean campaign on photochemical tracers transport and chemical con-version (MEDCAPOTH-TRACE): An outline, Atmos Environ. 32, 2045–2053.

    Article  CAS  Google Scholar 

  17. Tjernström, M. (1987) A study of flow over complex terrain using a three dimensional model. A preli-minary model evaluation focusing on stratus and fog, Ann. Geophys. 5B, 469–486.

    Google Scholar 

  18. Svensson, G. (1996) Model simulations of the air quality in Athens, Greece, during the MEDCAPHOT- TRACE campaign, Atmos. Environ. 32, 2239–2268.

    Article  Google Scholar 

  19. Svensson, G. and Klemm, O. (1996) Aircraft measurements and model simulations of the air quality in Athens, Greece, Atmos. Environ. 32, 2269–2290.

    Article  Google Scholar 

  20. Halliwell, G.R. and Allen, J.S. (1987) The large-scale coastal wind field along the west coast of North America, J. Geophys. Res. 92, 1861–1884.

    Article  Google Scholar 

  21. Beardsley, R.C., Dorman, C.E., Friehe, C.A., Rosenfeld, L.K. and Winant, C.D. (1987) Local at-mospheric forcing during the coastal ocean dynamics experiment. 1. A description of the marine boundary-layer and atmospheric conditions over a northern California upwelling region, J. Geophys. Res. 92, 1467–1488.

    Article  Google Scholar 

  22. Winant, C.D., Dorman, C.E., Friehe, C.A. and Beardsley, R.C. (1988) The marine layer off northern California-an example of supercritical channel flow, J. Atmos. Sci. 45, 3588–3605.

    Article  Google Scholar 

  23. Rogers, D., Dorman, C.E., Edwards, K., Brooks, I., Melville, K., Burk, S.D., Thompson, W.T., Holt, T., Ström, L., Tjernström, M., Grisogono, B., Bane, J.M., Nuss, W., Morley, B. and Schanot, A. (1998) Highlights of Coastal Waves 1996, Bull. Am. Meteorol.Soc. 79, 1307–1326.

    Article  Google Scholar 

  24. Grell, G. A., Dudhia, J. and Stauffer, D. R. (1995) A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). National Center for Atmospheric Research, Tech. Note TN-398, 122 pp.

    Google Scholar 

  25. Hodur, R. M. (1997) The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS), Mon. Wea. Rev. 125, 1414–1430.

    Article  Google Scholar 

  26. Tjernström, M. and Grisogono, B. (2000) Simulations of supercritical flow around points and capes in the coastal atmosphere, Journal of the Atmospheric Sciences 57, 108–135.

    Article  Google Scholar 

  27. Tjernström, M. (1999) Sensitivity of coastal atmospheric supercritical flow to ambient conditions, Tellus 51, 880–901.

    Article  Google Scholar 

  28. Doran, C., Shaw, W.J. and Hubbe, J.M. (1995) Boundary-layer characteristics over areas of inhomogeneous surface fluxes, J. Atmos. Sci. 34, 559–571.

    Google Scholar 

  29. Halldin, S., Gottschalk, L., van de Griend, AA., Gryning, S.-E., Heikenheimo, M., Högström, U., Jochum, A. and Lundin, L.-C. (1998) NOPEX-A northern hemisphere climate process land-surface experiment, J. Hydrol. 212–213, 212–213.

    Article  Google Scholar 

  30. Samuelsson, P. and Tjernström, M. (2001) Mesoscale flow modification induced by land-lake surface temperature and roughness differences, J. Geophys. Res. 106, 12419–12435.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tjernström, M., Svensson, G., Samuelsson, P., Sundararajan, R. (2003). Mesoscale Dynamics. In: Melas, D., Syrakov, D. (eds) Air Pollution Processes in Regional Scale. NATO Science Series, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1071-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1071-9_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1627-1

  • Online ISBN: 978-94-007-1071-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics