Skip to main content

On the Electromagnetic Modelling of Left-Handed Metamaterials

  • Chapter

Part of the book series: NATO Science Series ((NAII,volume 89))

Abstract

The electromagnetic modelling of discrete left-handed microwave metamaterials is discussed. A continuous-medium approach is proposed for the analysis of a wide class of left-handed and negative permeability media made by placing metallic inclusions in a host dielectric medium. This includes all artificial media made by the superposition of an artificial plasma and a negative magnetic permeability medium made of split ring resonators. The proposed model allows for the consideration of both edge- and broadsidecoupled split rings resonators. It also allows for the use of wires and/or metallic plates in the plasma simulation. Other related physical effects that can appear in these artificial media, such as bianisotropy, are also taken into account. The numerical computations provided by the model are compared with full-wave numerical simulations and experimental results, showing a good agreement. The advantages and disadvantages of the different left-handed metamaterial designs considered along the text are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Veselago, V.G. (1968) Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities, Soviet Phys. USPEKHI 10, pp. 509–514.

    Article  Google Scholar 

  2. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C and Schultz, S. (2000) Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, pp. 4184–4187.

    Article  CAS  Google Scholar 

  3. Rotman, W. (1962) Plasma simulation by artificial dielectrics and parallel-plate media, IRE Trans, on Antennas and Prop. AP-10, pp. 82–95.

    Article  Google Scholar 

  4. Pendry, J.B., Holden, A.J., Robbins, D.J. and Stewart, W.J. (1999) Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans, on Microwave Theory and Tech., MTT-47, pp. 2075–2084.

    Article  Google Scholar 

  5. Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C. and Schultz, S. (2001) Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial, Applied Phys. Lett. 78, pp. 489–491.

    Article  CAS  Google Scholar 

  6. Koch, W.E. (1948) Metallic delay lenses, Bell Syst. Tech. J. 27, pp. 58–82.

    Google Scholar 

  7. Collin, R.E. (1991) Field theory of guided waves, IEEE Press, N.Y.

    Google Scholar 

  8. Lindell, I.V., Sihvola, A.H., Tretyakov, S.A. and Viitanen, A.J. (1994) Electromagnetic waves in chiral and bi-isotropic media. Artech House, Boston and London.

    Google Scholar 

  9. Saadoun, M.M.I, and Engheta, N. (1992) A reciprocal phase shifter using novel preudochiral or Ω medium, Microwave and Opt. Tech. Lett. 5, pp. 184–188.

    Article  Google Scholar 

  10. Mariotte, F., Tretyakov, S.A., Sauviac, B. (1994) Isotropic chiral composite modeling: comparison between analytical, numerical, and experimental results, Microwave and Opt. Tech. Lett 7, pp. 861–864.

    Article  Google Scholar 

  11. Bahr, A.J. and Clausing, K.R. (1994) An approximate model for artificial chiral material, IEEE Trans, on Antennas and Prop. AP-42, pp. 1592–1599.

    Article  Google Scholar 

  12. Tretyakov, S.A., Sochava, A.A., Simovski, C.R. (1996) Influence of chiral shapes of individual inclusions on the absorption in chiral composite materials, Electromagnetics 16, pp. 113–127.

    Article  Google Scholar 

  13. Marqués, R., Medina, F., Rafii-El-Idrissi, R. (2002) Role of bianisotropy in negative permeability and left-handed metamaterials, Phys. Rev. B 65 pp. 144440

    Article  Google Scholar 

  14. Sihvola, A.H. (1999) Electromagnetic mixing formulas and applications. IEE, London.

    Book  Google Scholar 

  15. Shelby, R.A., Smith, D.R., Schultz, S. (2001) Experimental verification of a negative index of refraction, Science 292, pp. 77–79.

    Article  CAS  Google Scholar 

  16. Marqués, R., Martel, J., Mesa, F. and Medina, F. (2002) A new 2-D isotropic lefthanded metamaterial design: theory and experiment, Microwave and Opt. Tech. Lett. (in press).

    Google Scholar 

  17. Marqués, R., Martel, J., Mesa, F. and Medina, F. (2002) Left-handed media simulation and transmission of EM waves in sub-wavelength SRR-loaded metallic waveguides, Phys. Rev. Lett. (accepted for publication).

    Google Scholar 

  18. Pendry, J.B., Holden, A.J., Stewart, W.J. and Youngs, I. (1996) Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76, pp. 4773–4776.

    Article  CAS  Google Scholar 

  19. Pitarke, J.M., Garcia Vidal, F.J., Pendry, J.B. (1998) Effective electronic response of a system of metallic cilinders, Pys. Rev. B 57 pp. 15261–15266.

    Article  CAS  Google Scholar 

  20. Bahl, I., Bhartia, P. (1998) Microwave solid state circuit design, Wiley, N.Y.

    Google Scholar 

  21. Wheeler, H.A. (1965) Transmission lines properties of parallel strips separated by a dielectric sheet, IEEE Trans. Microwave Theory and Tech. MTT-13, pp. 172–185.

    Article  Google Scholar 

  22. Ghione, G., Naldi, C. (1984) Analytical formulas for coplanar lines and monolithic MICs, Electronic Lett., 20, pp. 179–181.

    Article  Google Scholar 

  23. Landau, L., Lifshitz, E. (1980) Statistical Phys., Pergamonn Press, Oxford.

    Google Scholar 

  24. Pendry, J.B. (2000) Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, pp. 3966–3969.

    Article  CAS  Google Scholar 

  25. Smith, D.R., Padilla, W.J., Vier, D.C., Shelby, R., Nemat-Nasser, S.C., Kroll, N. and Schultz, S. (2001) Left-handed metamaterials, in Photonic crystals and light localization in the 21st century, Proceedings of the NATO-ASI Conference on Photonic Crystals and Light Localization. Crete, June pp. 18–30, 2000, ed. by Costas M. Sokoulis (Kluwer Academic, Dordrecht), p. 351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marqués, R., Medina, F., Mesa, F., Martel, J. (2002). On the Electromagnetic Modelling of Left-Handed Metamaterials. In: Zouhdi, S., Sihvola, A., Arsalane, M. (eds) Advances in Electromagnetics of Complex Media and Metamaterials. NATO Science Series, vol 89. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1067-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1067-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1102-3

  • Online ISBN: 978-94-007-1067-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics