Skip to main content

A Review of Homogenization Studies for Biaxial Bianisotropic Materials

  • Chapter
Advances in Electromagnetics of Complex Media and Metamaterials

Part of the book series: NATO Science Series ((NAII,volume 89))

Abstract

Biaxial mediums in the form of naturally occurring orthorhombic, monoclinic and triclinic crystals are of long-standing scientific and technological importance. We consider the conceptualization of artificial biaxial mediums, through the homogenization of simple component mediums. Biaxiality in homogenized composite mediums originates from two noncollinear distinguished axes presented by the component mediums; these distinguished axes can have either an electromagnetic or topological origin. The relationship between the biaxial composite structure and the geometry, orientation and composition of the component mediums is explored for the nondissipative dielectric case. Extending these studies to include the effects of dissipation in dielectric-magnetic materials, a generalized biaxial composite structure is revealed for which the principal axes of real and imaginary parts of the permittivity and permeability constitutive dyadics do not coincide. Furthermore, in the bianisotropic regime, yet more general HCM structures arise; in particular, complex symmetries are presented in the constitutive dyadics which would not be anticipated from a familiarity with the dielectric or dielectric-magnetic case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Born, M, and Wolf, E. (1997) Principles of Optics, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  2. Nye, J.F. (1957) Physical Properties of Crystals, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  3. Cottis, P.G. and Kondylis, G.D. (1995) Properties of the dyadic Green’s function for an unbounded anisotropic medium, IEEE Trans. Antennas Propagat., 43, pp. 154–161.

    Article  Google Scholar 

  4. Cottis, P.G., Vazouras, C.N. and Spyrou, C. (1999) Green’s function for an unbounded biaxial medium in cylindrical coordinates, IEEE Trans. Antennas Propagat, 47, pp. 195–199.

    Article  Google Scholar 

  5. Weiglhofer, W.S. and Lakhtakia, A. (1995) On singularities of dyadic Green functions and long-wavelength scattering, Electromagnetics, 15, pp. 209–222.

    Article  Google Scholar 

  6. Weiglhofer, W.S. (1998) Electromagnetic depolarization dyadics and elliptic integrals, J. Phys. A: Math. Gen., 31, pp. 7191–7196.

    Article  CAS  Google Scholar 

  7. Weiglhofer, W.S. and Mackay, T.G. (2002) Needles and pillboxes in anisotropic mediums, IEEE Trans. Antennas Propagat, 50, pp. 85–86.

    Article  Google Scholar 

  8. Abdulhalim, I. (1999) Analytic propagation matrix method for linear optics of arbitrary biaxial layered media, J. Opt. A.: Pure Appl. Opt., 1, pp. 646–53.

    Article  Google Scholar 

  9. Lakhtakia, A., ed. (1996) Selected Papers on Linear Optical Composite Materials, SPIE Optical Engineering Press, Bellingham, WA.

    Google Scholar 

  10. Lakhtakia, A. (2000) On direct and indirect scattering approaches for homogenization of particulate composites, Microw. Opt. Technol. Lett., 25, pp. 53–56.

    Article  Google Scholar 

  11. Weiglhofer, W.S. and Lakhtakia, A. (1998) The correct constitutive relations of chiroplasmas and chiroferrites, Microw. Opt. Technol. Lett., 17, pp. 405–408.

    Article  Google Scholar 

  12. Weiglhofer, W.S., Lakhtakia, A. and Michel, B. (1998) On the constitutive parameters of a chiroferrite composite medium, Microwave Opt. Technol. Lett. 18, pp. 342–345.

    Article  Google Scholar 

  13. Weiglhofer, W.S. and Mackay, T.G. (2000) Numerical studies on the constitutive parameters of a chiroplasma composite medium, Arch. Elektron. Übertrag., 54, pp. 259–265.

    Google Scholar 

  14. Ward, L. (1980) The Optical Constants of Bulk Materials and Films, Adam Hilger, Bristol, UK.

    Google Scholar 

  15. Sihvola, A. (1999) Electromagnetic Mixing Formulas and Applications, The Institution of Electrical Engineers, London, UK.

    Book  Google Scholar 

  16. Wiener, O. (1912) Die Theorie des Mischkörpers für das Feld der Stationären Strömung, Abh. Math.-Phys. Kl. Sächs., 32, pp. 507–604.

    Google Scholar 

  17. Sherwin, J.A., Lakhtakia, A. and Michel, B. (2000) Homogenization of similarly oriented, metallic, ellipsoidal inclusions using the Bruggeman formalism, Opt. Comm., 178, pp. 267–273.

    Article  CAS  Google Scholar 

  18. Mackay, T.G., Lakhtakia, A. and Weiglhofer, W.S. (2001) Homogenisation of similarly oriented, metallic, ellipsoidal inclusions using the bilocal-approximated strong-property-fluctuation theory, Opt. Comm., 197, pp. 89–95.

    Article  CAS  Google Scholar 

  19. Mackay, T.G. and Weiglhofer,W.S. (2001) Homogenization of biaxial composite materials: nondissipative dielectric properties, Electromagnetics, 21, pp. 15–26.

    Article  Google Scholar 

  20. Mackay, T.G. and Weiglhofer, W.S. (2000) Homogenization of biaxial composite materials: dissipative anisotropic properties, J. Opt. A: Pure Appl. Opt., 2, pp. 426–432.

    Article  Google Scholar 

  21. Mackay, T.G. and Weiglhofer, W.S. (2001) Homogenization of biaxial composite materials: bianisotropic properties, J. Opt. A: Pure Appl. Opt., 3, pp. 45–52.

    Article  CAS  Google Scholar 

  22. Weiglhofer, W.S. and Lakhtakia, A. (1999) On electromagnetic waves in biaxial bianisotropic media, Electromagnetics, 19, pp. 351–362.

    Article  Google Scholar 

  23. Chen, H.C. (1993) Theory of Electromagnetic Waves, TechBooks, Fairfax, VA.

    Google Scholar 

  24. Kong, J.A. (1986) Electromagnetic Wave Theory Wiley, New York.

    Google Scholar 

  25. Bohren, CF. and Huffman, D.R. (1983) Absorption and Scattering of Light by Small Particles, Wiley, New York.

    Google Scholar 

  26. Ashcroft, N.W. and Mermin, N.D. (1976) Solid State Physics, Saunders College, Philadelphia, PA.

    Google Scholar 

  27. W.S. Weiglhofer, (1998) A perspective of bianisotropy and Bianisotropics′97, Int. J. Appl. Electromag. Mech., 9, pp. 93–101.

    Google Scholar 

  28. Weiglhofer, W.S. (2002) A flavour of constitutive relations: the linear regime, in Zouhdi, S., Sihvola, A., and Arsalane, M. (eds.), Advances in Electromagnetics of Complex Media and Metamaterials, Kluwer, Dordrecht, pp. 61–80.

    Chapter  Google Scholar 

  29. Michel, B. (2000) Recent developments in the homogenization of linear bianisotropic composite materials, in Singh-, O.N. and Lakhtakia, A. (eds.), Electromagnetic Fields in Unconventional Structures, Wiley, New York, pp. 39–82.

    Google Scholar 

  30. Weiglhofer, W.S., Lakhtakia, A. and Michel, B. (1997) Maxwell Garnett and Bruggeman formalisms for a particulate composite with bianisotropic host medium, Microwave Opt. Technol. Lett., 15, pp. 263–266; erratum (1999), 22, p. 221.

    Article  Google Scholar 

  31. Michel, B., Lakhtakia, A. Weiglhofer, W.S. and Mackay, T.G. (2001) Incremental and differential Maxwell Garnett formalisms for bi-anisotropic composites, Compos. Sci. Technol., 61, pp. 13–18.

    Article  Google Scholar 

  32. Michel, B., Lakhtakia, A. and Weiglhofer., W.S. (1998) Homogenization of linear bianisotropic particulate composite media — Numerical studies, Int. J. Appl. Electromag. Mech., 9, pp. 167–78; erratum (1999), 10, pp. 537-538.

    Google Scholar 

  33. Michel, B. and Weiglhofer, W.S. (1997) Pointwise singularity of dyadic Green function in a general bianisotropic medium, Arch. Elektron. Übertrag., 51, pp. 219–232; erratum (1998), 52, p. 31.

    Google Scholar 

  34. Michel, B. (1997) A Fourier space approach to the pointwise singularity of an anisotropic dielectric medium, Int. J. Appl. Electromag. Mech., 8, pp. 219–227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mackay, T.G., Weiglhofer, W.S. (2002). A Review of Homogenization Studies for Biaxial Bianisotropic Materials. In: Zouhdi, S., Sihvola, A., Arsalane, M. (eds) Advances in Electromagnetics of Complex Media and Metamaterials. NATO Science Series, vol 89. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1067-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1067-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1102-3

  • Online ISBN: 978-94-007-1067-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics