Skip to main content

Electroreception: Strategies for Separation of Signals from Noise

  • Chapter

Abstract

The electric sense is ancestral to fishes and is present in most non-teleosts as well as certain teleost species. The electrosensory world of fishes is rich with electric fields from a multitude of sources includ- ing the earth’s magnetic field and the bodies of all aquatic organisms including the electrosensing fish, itself. The fish’s exquisite sensitivity to these fields allows it to orient, navigate, communicate and even detect and localize other fish, both prey and conspecifics. Electroreceptors are of two basic morphologi- cal types, ampullary and tuberous. Ampullary receptors, the ancestral type, are sensitive to extremely weak, low-frequency electric signals. Tuberous receptors represent a specialization of the weakly electric teleost fishes and are most sensitive to higher frequencies near to the frequency of the fish’s own electric organ discharge (EOD).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilera RA., Castello M.E., Caputi A.A. (2001) Electroreception in Gymnotus campo: Differences between self-generated and conspecific-generated signal carriers, J. Exp. Biol. 204: 185–498.

    PubMed  CAS  Google Scholar 

  • Andres K.H., von During M., Petrasch E. (1988) The fine structure of ampullary and tuberous electroreceptors in the South American blind catfish Pseudocetopsis spec, Anat. Embryol. 177: 523–535.

    Article  PubMed  CAS  Google Scholar 

  • Bacher M. (1983) A new method for the simulation of electric fields, generated by electric fish, and their field distortions by objects, Biol. Cybern. 47: 51–58.

    PubMed  CAS  Google Scholar 

  • Baron V.D., Morshnev K.S., Olshansky V.M., Orlov A.A. (1994a) Electric organ discharges of two species of African catfish (Synodontis) during social behavior, Anim. Behav. 48: 1472–1475.

    Article  Google Scholar 

  • Baron YD., Orlov A.A., Golubtsov A.S. (1994b) African Clarios catfish elicits long-lasting weak electric pulses, Experientia 50: 644–647.

    Article  Google Scholar 

  • Bastian J. (1977) Variations in the frequency response of electroreceptors dependent on receptor location in weakly electric fish (Gymnotoidei) with a pulse discharge, J. Comp. Physiol. 121: 53–64.

    Article  Google Scholar 

  • Bastian J. (1994) Electrosensory organisms, Physics Today, Feb. 30–37.

    Google Scholar 

  • Bastian J. (1995) Pyramidal cell plasticity in weakly electric fish: a mechanism for attenuating responses to reafferent electrosensory inputs, J. Comp. Physiol. A 176: 63–78.

    Article  PubMed  CAS  Google Scholar 

  • Bell C.C. (1989) Sensory coding and corollary discharge effects in Mormyrid electric fish, J. Exp. Biol. 146: 229–253.

    PubMed  CAS  Google Scholar 

  • Bell C.C. (1990) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibers, J. Neurophysiol. 63(2): 319–332.

    PubMed  CAS  Google Scholar 

  • Bell C.C, Han V.Z., Sugawara Y., Grant K. (1999) Synaptic plasticity in the mormyrid electrosensory lobe, J. exp. Biol. 202: 1339–1355.

    PubMed  CAS  Google Scholar 

  • Bennett M.V.L. (1965) Electroreceptors in mormyrids, Cold Spring Harbor Symp. Quant. Biol. 30: 245–262.

    Article  PubMed  CAS  Google Scholar 

  • Bennett M.V.L. (1967) Mechanisms of Electroreception, in: Cahn P. (ed), Lateral Line Detectors, Indiana Univ Press, Indiana, pp. 313: 393.

    Google Scholar 

  • Bodznick D., Hjemstad G., Bennett M.V.L. (1993) Accommodation to maintained stimuli in the ampullae of Lorenzini: How an electroreceptive fish achieves sensitivity in a noisy world, Jap. J. Physiol. 43, Suppl. 1, S213–S237.

    Google Scholar 

  • Bodznick D., Montgomery J.C., Carey M. (1999) Adaptive mechanisms in the elasmobranch hindbrain, J. Exp. Biol. 202: 1357–4375.

    PubMed  Google Scholar 

  • Bogorov V.G., Deenitskaya R.M., Gorodnitskiy A.M., Kazanskiy M.M., Kontorovich V.M., Litvinoy E.M., Trubyatchinskiy N.N., Fedorov VD. (1969) Character and causes of the vertical variation of the natural electric field in the ocean, Oceanology 9: 622–626.

    Google Scholar 

  • Bratton B.O., Ayers J.L. (1987) Observations on the electric organ discharge of two skate species (Chondrichthys: Rajidae) and its relationship to behavior, Environ. Biol. Fishes 20(4): 241–254.

    Google Scholar 

  • Budelli R., Caputi A.A. (2000) The electric image in weakly electric fish: Perception of objects of complex impedance, J. Exp. Biol. 203: 481–492.

    PubMed  CAS  Google Scholar 

  • Bullock T.H., Heiligenberg W. (1986) (Eds.) Electroreception, John Wiley and Sons, New York City.

    Google Scholar 

  • Bullock T.H., Bodznick D.A., Northcutt R.G. (1983) The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality, Brain Res. Rev. 6: 25–46.

    Article  Google Scholar 

  • Caputi A.A., Budelli R., Grant K., Bell C.C. (1998) The electric image in weakly electric fish: Physical images of resistive objects in Gnathonemus petersii, J. Exp. Biol. 201: 2115–2128.

    PubMed  CAS  Google Scholar 

  • Carr C.E., Maler L., Sas E. (1982) Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish, J. Comp. Neurol. 211: 139–153.

    Article  PubMed  CAS  Google Scholar 

  • Castelló M.E., Aguilera P.A., Trujillo-Cenóz O., Caputi A.A. (2000) Electroreception in Gymnotus carapo: Pre-receptor processing and the distribution of electroreceptor types, J. Exp. Biol. 203: 3279–3287.

    PubMed  Google Scholar 

  • Fields D.R., Ellisman M.H. (1985) Synaptic morphology and differences in sensitivity, Science 228: 197–199.

    Article  PubMed  CAS  Google Scholar 

  • Franchina C.R., Hopkins C.D. (1996) The dorsal filament of the weakly electric apteronotidae (Gymnotiformes; Teleostei) is specialized for electroreception, Brain Behav. Evol. 47: 165–178.

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn M. (1986) The Ecology, courtship and mating of gymnotiform electric fish, in: Bullock TH., Heiligenberg W. (Eds.), Electroreception, John Wiley and Sons, New York City, pp. 497–525.

    Google Scholar 

  • Hagedorn M., Womble M., Finger T.E. (1990) Synodontid catfish: A new group of weakly electric fish, Brain Behav. Evol. 35: 268–277.

    Article  PubMed  CAS  Google Scholar 

  • Hanika S., Kramer B. (2000) Electrosensory prey detection in the African sharp tooth catfish, Ciarias gariepinus (Clariidae), of a weakly electric mormyrid fish, the bulldog (Marcusenius macrolepidotus), Behav. Ecol. Sociobiol. 48: 218–228.

    Article  Google Scholar 

  • Heiligenberg W. (1973) Electrolocation of objects in the electric fish Eigenmannia (Rhamphichthyidae, Gymnotoidei), J. Comp. Physiol. 87: 137–164.

    Article  Google Scholar 

  • Heiligenberg W. (1993) Electrosensation, in: Evans D.H. (Ed.), The Physiology of Fishes, CRC Press, Boca Raton, FL, pp. 137–160.

    Google Scholar 

  • Heiligenberg W. (1991) Neural Nets in Electric Fish, MIT Press, Cambridge MA, pp. 179.

    Google Scholar 

  • Heiligenberg W., Keller C.H., Metzner W., Kawasaki M. (1991) Structure and function of neurons in the complex of the nucleus electrosensorius of the gymnotiform fish Eigenmannia: Detection and processing of electric signals in social communication, J. Comp. Physiol. A 169: 151–164.

    Article  PubMed  CAS  Google Scholar 

  • Holzworth R.H., Onsager T., Kintner E., Powell S. (1984) Planetary-scale variability of the fair-weather vertical electric field in the stratosphere, Phys. Rev. Letters 53(14): 1398–1401.

    Article  Google Scholar 

  • Hopkins C.D. (1973) Lightning as background noise for communication among electric fish, Nature 242: 268–269.

    Article  Google Scholar 

  • Hopkins C.D. (1976) Stimulus filtering and electroreception: Tuberous electroreceptors in three species of gymnotoid fish, J. Comp. Physiol. 111(2): 171–208.

    Article  Google Scholar 

  • Hopkins C.D. (1981) On the diversity of electric signals in a community of mormyrid electric fish in west Africa, Am. Zool. 21: 211–222.

    Google Scholar 

  • Hopkins C.D. (1986) Behavior of Mormyridae, in: Bullock T.H., Heiligenberg W. (Eds.), Electroreception, John Wiley and Sons, New York City, pp. 527–576.

    Google Scholar 

  • Hopkins C.D., Bass A.H. (1981) Temporal coding of species recognition signals in an electric fish, Science 212(3): 85–87.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins C.D., Shieh K.-T., McBride D.W. Jr., Winslow M. (1997) A quantitative analysis of passive electrolocation behavior in electric fish, Brain Behav. Evol. 50(Suppl. 1): 32–59.

    Article  PubMed  Google Scholar 

  • Kalmijn A.J. (1974) The detection of electric fields from inanimate and animate sources other than electric organs, in: Fessard A. (Ed.), Handbook of Sensory Physiology vol. III/3, pp.147–200.

    Google Scholar 

  • Kalmijn A.J. (1978) Electric and Magnetic sensory world of Sharks, Skates and Rays, in: Hodgson E.S., Mathewson R.F. (Eds.), Sensory Biology of Sharks, Skates and Rays. Office of Naval Research, Arlington.

    Google Scholar 

  • Kalmijn A.J. (1982) Electric and magnetic field detection in elasmobranch fishes, Science 218: 916–918.

    Article  PubMed  CAS  Google Scholar 

  • Kalmijn A.J. (1987) Detection of weak electric fields, in: Atema J., Fay R.R., Popper W.N. (Eds.), Sensory biology of aquatic animals, pp. 151–186.

    Google Scholar 

  • Knudsen E.I. (1974) Behavioral thresholds to electric signals in high frequency electric fish, J. Comp. Physiol. 91: 333–353.

    Article  Google Scholar 

  • Knudsen E.I. (1976) Midbrain units in catfish: Response properties to electroreceptive input, J. Comp. Physiol. 109: 315–335.

    Article  Google Scholar 

  • Koch-Rose M.S., Ready K.R., Canton J.P. (1994) Factors controlling seasonal nutrient profiles in a subtropical peatland of the Florida Everglades, J. Environ. Qual. 23: 526–533.

    Article  Google Scholar 

  • Kramer B. (1990) Electrocommunication in Teleost Fishes: Behavior and Experiments, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Lissmann H.W. (1951) Continuous electric signals from the tail of a fish, Gymnarchus niloticus, Nature 167: 201–202.

    Article  PubMed  CAS  Google Scholar 

  • Lissmann H.W., Machin K.E. (1958) The mechanism of object location in Gymnarchus niloticus and similar fish, J. Exp. Biol. 35: 451–486.

    Google Scholar 

  • Lissmann H.W, Machin K.E. (1963) Electric receptors in a non-electric fish, Nature 199: 88–89.

    Article  PubMed  CAS  Google Scholar 

  • MacIver M.A., Sharabash N.M., Nelson M.E. (2001) Prey-capture behavior in gymnotid electric fish: Motion analysis and effects of water conductivity, J. Exp. Biol. 204: 543–557.

    PubMed  CAS  Google Scholar 

  • Manger P.R., Hughes R.L. (1992) Ultrastructure and distribution of epidermal sensory receptors in the beak of the echidna, Tachyglossus aculeatus, Brain Behav. Evol. 40(6): 287-96.

    Article  PubMed  Google Scholar 

  • McCreery D.B. (1977a) Two types of electroreceptive lateral lemniscal neurons of the lateral line lobe of the catfish Ictalurus nebulosus; connections from the lateral line nerve and steady-state frequency response characteristics, J. Comp. Physiol. A 113: 317–339.

    Article  Google Scholar 

  • McCreery D.B. (1977b) Spatial organization of receptive fields of lateral lemniscal neurons of the lateral line lobe of the catfish Ictalurus nebulosus, J. Comp. Physiol. A 113: 341–353.

    Article  Google Scholar 

  • Merron G.S. (1993) Pack-hunting in two species of catfish, Ciarias gariepinus and C. ngamensis, in the Okavango Delta, Botswana, J. Fish Biol. 43: 575–584.

    Google Scholar 

  • Metzner W., Heiligenberg W. (1991) The coding of signals in the electric communication of the gymnotiform fish Eigenmannia: From electroreceptors to neurons in the torus semicircularis of the midbrain, J. Comp. Physiol. A 169: 135–150.

    Article  PubMed  CAS  Google Scholar 

  • Moller P. (1995) Electric fishes. History and Behavior, Chapman and Hall, London, pp. 584.

    Google Scholar 

  • Montgomery J.C., Bodznick D. (1999) Signals and noise in the elasmobranch electrosensory system, J. Exp. Biol. 202: 1349–1355.

    PubMed  Google Scholar 

  • Murray R.W. (1965) Electroreceptor mechanisms: The relation of impulse frequency to stimulus strength and responses to pulsed stimuli in the ampullae of Lorenzini of elasmobranches, J. Physiol. 180: 592–608.

    PubMed  CAS  Google Scholar 

  • Nelson M.E., MacIver M.A. (1999) Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences, J. Exp. Biol. 202: 195–1203.

    Google Scholar 

  • New J.G. (1997) The evolution of vertebrate electrosensory systems, Brain Behav. Evol. 50: 244–252.

    Article  PubMed  CAS  Google Scholar 

  • Paul C.R., Sasser S.A. (1987) Introduction to electromagnetic fields, McGraw-Hill, New York City, pp. 742.

    Google Scholar 

  • Paulin M. (1995) Electroreception and the compass sense of sharks, J. Theor. Biol. 174: 325–339.

    Article  Google Scholar 

  • Peters R.C., Bretschneider F. (1972) Electric phenomena in the habitat of the catfish Ictalurus nebulosus LeS, J. Comp. Physiol. 81: 405–410.

    Article  Google Scholar 

  • Peters R.C, Buwalda R.J.A. (1972) Frequency response of the electroreceptors (“small pit organs”) of the catfish, Ictalurus nebulosus LeS, J. Comp. Physiol. 79: 29–38.

    Article  Google Scholar 

  • Peters R.C, van Wijland F. (1974) Electro-orientation in the passive electric catfish, Ictalurus nebulosus LeS, J. Comp. Physiol. 92: 273–280.

    Article  Google Scholar 

  • Peters R.C, Loos W.J.G., Gerritsen A. (1974) Distribution of electroreceptors, bioelectric field patterns and skin resistance in the catfish, Ictalurus nebulosus LeS, J. Comp. Physiol. 92: 11–22.

    Article  Google Scholar 

  • Rasnow B. (1996) The effects of simple objects on the electric field of Apteronotus, J. Comp. Physiol. A 178: 397–411.

    Google Scholar 

  • Reid S. (1983) La biologia de los bagres rayados Pseudoplatystoma fasciatum y P tigrinum en la cuenca del Rio Apure — Venezuela, Revista UNELLEZ de Ciencia y Tecnologia 1: 13–41.

    Google Scholar 

  • Reimers C.E., Tender L.M., Fertig S., Wang W. (2001) Harvesting energy from the marine sediment-water interface, Environ. Sci. Technol. 35: 192–195.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez D.Y., Zakon H.H. (1990) The effects of postembryonic receptor cell addition on the response properties of electroreceptive afferents, J. Neurosci. 10(1): 361–369.

    PubMed  CAS  Google Scholar 

  • Sanford T.B., Flick R.E. (1975) On the relationship between transport and motional electric potentials in broad, shallow currents, J. Marine Res. 33: 123–139.

    Google Scholar 

  • Scheich H., Bullock T.H. (1974) The detection of electric fields from electric organs, in: Fessard A. (Ed.), Handbook of Sensory Physiology, Vol III/3, pp. 201–256.

    Google Scholar 

  • Schluger J.H., Hopkins CD. (1987) Electric fish approach stationary signal sources by following electric current lines, J. Exp. Biol. 130: 359–367.

    PubMed  CAS  Google Scholar 

  • Schweitzer J. (1986) Functional organization of the electroreceptive midbrain in an elasmobranch (Platyrhinoidis triseriata). A single-unit study, J. Comp. Physiol. A 158(1): 43–58.

    Article  PubMed  CAS  Google Scholar 

  • Soderberg E.R. (1969) ELF noise in the sea at depths from 30 to 300 meters, J. Geophys. Res. 74(9): 2376–2387.

    Article  Google Scholar 

  • Stoddard P.K. (1999) Predation enhances complexity in the evolution of electric fish signals, Science 400: 254–256.

    CAS  Google Scholar 

  • Tricas, T.C., Michael S.W., Sisneros J.A. (1995) Electrosensory optimization to conspecific phasic signals for mating, Neuroscience Letters 202: 129–132.

    Article  PubMed  CAS  Google Scholar 

  • Turner R.W., Maler L., Burrows M. (1999) Electroreception and Electrocommunication, J. Exp. Biol. 202(10): 1167–1458.

    Google Scholar 

  • von Arx W.S. (1962) An Introduction to Physical Oceanography, Addison-Wesley, Reading, MA, pp. 422.

    Google Scholar 

  • von der Emde G. (1990) Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii, J. Comp. Physiol. A 167: 413–421.

    Google Scholar 

  • von der Emde G. (1999) Active electrolocation of objects in weakly electric fish, J. Exp. Biol. 201: 1205–1215.

    Google Scholar 

  • von der Emde G., Bleckmann H.(1997) Waveform tuning of electroreceptor cells in the weakly electric fish, Gnathonemus petersii, J. Comp. Physiol. A 181: 511–524.

    Article  Google Scholar 

  • von der Emde G., Schwarz S., Gomez L., Budelli R., Grant K. (1998) Electric fish measure distance in the dark, Nature 395: 890–894.

    Article  PubMed  Google Scholar 

  • Waltman B. (1966) Electrical properties and fine structure of the ampullary canals of Lorenzini, Acta Physiol. Scan. 66, Suppl. 264, pp. 60.

    Google Scholar 

  • Wilkens L.A., Wettring B., Wagner E., Wojtenek W., Russell D. (2001) Prey detection in selective plankton feeding by the paddlefish: Is the electric sense sufficient?, J. Exp. Biol. 204: 1381–1389.

    PubMed  CAS  Google Scholar 

  • Yager D.D., Hopkins C.D. (1993) Directional characteristics of tuberous electroreceptors in the weakly electric fish, Hypopomus (Gymnotiformes), J. Comp. Physiol. A 173(4): 401-14.

    Article  PubMed  Google Scholar 

  • Zakon H.H. (1984) The ionic basis of the oscillatory receptor potential of tuberous electroreceptors in Stemopygus, Soc. Neurosci. Abstr. 10: 193.

    Google Scholar 

  • Zakon H.H. (1986) The electroreceptive periphery, in: Bullock TH., Heiligenberg W. (Eds.), Electroreception, John Wiley and Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Keller, C.H. (2004). Electroreception: Strategies for Separation of Signals from Noise. In: von der Emde, G., Mogdans, J., Kapoor, B.G. (eds) The Senses of Fish. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1060-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1060-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3779-2

  • Online ISBN: 978-94-007-1060-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics