Skip to main content

A Fish’s Eye View of Habitat Change

  • Chapter
The Senses of Fish

Abstract

In aquatic ecosystems, visually mediated predator-prey interactions are highly dependent on the environmental light regime; however, the wavelengths of ambient light and thresholds of light intensity vary as a function of water depth and dissolved organic matter. Light is also scattered by water molecules creating polarized light and by silts and clays creating turbid conditions. As a result of these changes in the visual environment, the visual systems of fishes have developed many adaptations, and are finely tuned to the spectrum and intensity of light in the microhabitat.

In addition to these physical constraints, natural selection favors prey that are harder to detect by the predator. To improve the probability of detecting these cryptic prey, many planktivorous fish utilize “saltatory search”, a behavior which is intermediate between ambush and cruise search strategies. Foragers using a saltatory search strategy only search during stationary pauses between repositioning movements. To further improve their foraging success, these fish systematically change the components of search in response to changes in the prey assemblage and light environment.

Variation in environmental light is a selective pressure for changes in foraging behavior, but also leads to changes in the fish eye. The structure of the eye, retinal organization and visual pigments of fish all vary as a function of ambient light conditions. These visual system variations can be classed as 1 ) reversible, where the fish respond to changes on a daily, seasonal or migratory cycle; or 2) irreversible, where the fish undergo a transformation or metamorphosis in preparation for life in a new habitat. The life history strategy and the light environment of the visual habitat can explain variable timetables of retinal development.

The visual habitat of fish is a complex niche varying in the quality and intensity of light. The corresponding diversity revealed in the structure of the visual system in fish is dynamic and intriguing. The visual ecology of fish is directly affected by the environmental light conditions. Vision is very important to foraging success and predator avoidance in fish, which are important selective pressures in the adaptation of the retina/fish eye to visual habitat. Understanding retinal structure and function in the context of behavioral ecology is an area rich for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlbert I.-B. (1969) The organization of the cone cells in the retinae of four teleosts with different feeding habits (Perca fluviatilis L., Lucioperca lucioperca L., Acerina cernua L. and Coregonus albula). Ark. Zool. Ser. 222: 445–481.

    Google Scholar 

  • Ahlbert I.-B. (1973) Ontogeny of double cones in the retina of perch fry (Perca fluviatilis, Teleostei). Acta Zoologica 54: 241–254.

    Article  Google Scholar 

  • Ahlbert I.-B. (1976) Organization of the cone cells in the retinae of salmon (Salmo salar) and trout (Salmo trutta trutta) in relation to their feeding habits. Acta Zoologica 57: 13–35.

    Article  Google Scholar 

  • Ali M.A. (1975) Retinomotor responses. In: Ali M.A. (Ed.), Vision in Fishes. Plenum Press, London, pp. 313–355.

    Google Scholar 

  • Anctil M. (1979) Development of bioluminescence and photophores in the midshipman fish, Porichthys notatus. J. Morphol. 151: 363–396.

    Article  Google Scholar 

  • Anderson J.P, Stephens D.W., Dunbar S.R. (1997) Saltatory search: a theoretical analysis. Behav. Ecol. 8: 307–317.

    Article  Google Scholar 

  • Applebury M.L., Hargrave P.A. (1986) Molecular biology of the visual pigments. Vis. Res. 26: 1881–1895.

    Article  PubMed  CAS  Google Scholar 

  • Archer S.N., Hope A., Partridge J.C. (1995) The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc. R. Soc. Lond. B Biol. Sci. 262: 289–295.

    Article  CAS  Google Scholar 

  • Barrington E.J.W. (1961) Metamorphic processes in fish and lamprey. Am. Zool. 1: 97–106.

    Google Scholar 

  • Beatty D.D. (1975a) Rhodopsin-porphyropsin changes in paired-pigment fishes. In: Ali M.A. (Ed.), Vision in Fishes. Plenum Press, London, pp. 635–644.

    Google Scholar 

  • Beatty D.D. (1975b) Visual pigments of the American eel, Anguilla rostrata. Vis. Res. 15: 771–776.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet L., Browman H.I., Hawryshyn C.W. (1993) Optic nerve response and retinal structure in rainbow trout of different sizes. Vis. Res. 33: 1739–1746.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet L., Novales Flamarique I., Hawryshyn C.W. (1997) Cone photoreceptor topography in the retina of sexually mature Pacific salmonid fishes. J. Comp. Neurol. 383: 49–59.

    Article  PubMed  CAS  Google Scholar 

  • Bilotta J., Demarco PJ. Jr., Powers M.K. (1995) The contribution of On-and Off-pathways to contrast sensitivity and spatial resolution in goldfish. Vis. Res. 35: 103–108.

    Article  PubMed  CAS  Google Scholar 

  • Blanks J.C, Bok D. (1977) An autoradiographic analysis of postnatal cell proliferation in the normal and degenerative mouse retina. J. Comp. Neurol. 174: 317–328.

    Article  PubMed  CAS  Google Scholar 

  • Blaxter J.H.S. (1976) The role of light in the vertical migration of fish-a review. In: Evans G.C, Bainbridge R., Rackham O. (Eds.), Light as an Ecological Factor. Blackwell, Oxford, pp. 189–210.

    Google Scholar 

  • Blaxter J.H.S. (1986) Development of sense organs and behavior of teleost larvae with special reference to feeding and predator avoidance. Trans. Am. Fish. Soc. 115: 98–114.

    Article  Google Scholar 

  • Blaxter J.H.S., Jones M.P. (1967) The development of the retina and retinomotor responses in the herring. J. Mar. Biol. Assoc. U.K. 47: 677–697.

    Article  Google Scholar 

  • Blaxter J.H.S., Staines M. (1970) Pure-cone retinae and retinomotor responses in the herring. J. Mar. Biol. Assoc. U.K. 50: 449–460.

    Article  Google Scholar 

  • Borwein B. (1981) The retinal receptor: a description. In: Enoch J.M., Tobet F.L. (Eds.), Vertebrate Photoreceptor Optics. Springer-Verlag, Berlin, Heidelberg, New York, pp. 11–81.

    Google Scholar 

  • Bowmaker J.K., Kunz Y.W. (1987) Ultraviolet receptors, tetrachromatic color vision and retinal mosaics in the brown trout (Salmo trutta): Age dependent changes. Vis. Res. 27: 2101–2108.

    Article  PubMed  CAS  Google Scholar 

  • Braekevelt C.R. (1982) Photoreceptor fine structure in the goldeye (Hiodon alosoides) (Teleost). Anat. Embryol. 165: 177–192.

    Article  PubMed  CAS  Google Scholar 

  • Braekevelt C.R. (1984) Retinal fine structure in the European eel Anguilla anguilla. Anat. Anz. Jena 157: 233–243.

    CAS  Google Scholar 

  • Braekevelt C.R. (1994) Retinal photoreceptor fine structure in the short-tailed stingray (Dasyatis brevicaudata). Histol. Histopath. 9: 507–514.

    CAS  Google Scholar 

  • Branchek T., Bremiller R. (1984) The development of photoreceptors in the zebrafish, Brachydanio rerio. J. Comp. Neurol. 224: 107–115.

    Article  PubMed  CAS  Google Scholar 

  • Britt L.L., Loew, E., McFarland W.N. (2001) Visual pigments in the early life stages of Pacific Northwest marine fishes. J. Exp. Biol. 204: 2581–2587.

    PubMed  CAS  Google Scholar 

  • Browman H.I., Gordon W.C., Evans B.I., O’Brien W.J. (1990) Correlation between histological and behavioral measures of visual acuity in a zooplanktivorous fish, the white crappie (Pomoxis annularis). Brain Behav. Evol. 35: 85–97.

    Article  PubMed  CAS  Google Scholar 

  • Browman H.I., Hawryshyn C.W. (1994) The developmental trajectory of ultraviolet photosensitivity in rainbow trout is altered by thyroxine. Vis. Res. 34: 1397–1406.

    Article  PubMed  CAS  Google Scholar 

  • Browman H.I., Novales Flamarique I., Hawryshyn C.W. (1994) Ultraviolet photoreception contributes to prey search behavior in two species of zooplanktivorous fishes. J. Exp. Biol. 186: 187–198.

    Google Scholar 

  • Burkhardt D.A. (1977) Responses and receptive-field organization of cones in perch retina. J. Neurophysiol. 40: 53–62.

    PubMed  CAS  Google Scholar 

  • Burnside B., Adler A., O’Connor P. (1983) Retinomotor pigment migration in the teleost retinal pigment epithelium. I. Roles for actin and microtubules in pigment granule transport and cone movement. Invest. Ophthalmol. Vis. Sci. 24: 145.

    Google Scholar 

  • Cameron D.A., Pugh E.N. Jr (1991) Double cones as a basis for a new type of polarization vision in vertebrates. Nature 363: 161–164.

    Article  Google Scholar 

  • Carleton K.L., Harosi F., Kocher T.D. (2000) Visual pigments of African cichlid fishes: evidence for ultraviolet vision from microspectrophotometry and DNA sequences. Vis. Res. 40: 879–890.

    Article  PubMed  CAS  Google Scholar 

  • Carleton K.L., Kocher T.D. (2001) Cone opsin genes of African cichlid fishes: Tuning spectral sensitivity by differential gene expression. Mol. Biol. Evol. 18: 1540–1550.

    Article  PubMed  CAS  Google Scholar 

  • Carter-Dawson L.D., Lavail M.M. (1976) Rods and cones in the mouse retina. II. Autoradiographic analysis of cell generation using tritiated thymidine. J. Comp. Neurol. 188: 263–272.

    Article  Google Scholar 

  • Case J.F, Warner J., Barnes A.T., Lowenstine M. (1977) Bioluminescence of lantern fish (Myctophidae) in response to changes in light intensity. Nature 265: 179–181.

    Article  PubMed  CAS  Google Scholar 

  • Chen D.M., Stark W.S. (1994) Electroretinographic analysis of ultraviolet sensitivity in juvenile and adult goldfish retinas. Vis. Res. 34: 2941–2944.

    Article  PubMed  CAS  Google Scholar 

  • Cohen A.I. (1972) Rods and cones. In: Fuortes M.G.F. (Ed.), Handbook of Sensory Physiology, Vol. VII/2. Springer, Berlin, pp. 63–110.

    Google Scholar 

  • Collin (1988) The retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae): morphology and quantitative analysis of the ganglion, amacrine and bipolar cell populations. Exp. Biol. 47: 195–207.

    PubMed  CAS  Google Scholar 

  • Collin S.P, Collin H.B. (1988) The morphology of the retina and lens of the sandlance, Limnichthyes fasciatus (Creeiidae). Exp. Biol. 47: 209–218.

    PubMed  CAS  Google Scholar 

  • Collin S.P, Collin H.B. (1998) Retinal and lenticular ultrastructure in the aestivating salamanderfish, Lepidogalaxias salamandroides (Galaxiidae, Teleostei) with special reference to a new type of photoreceptor mosaic. Hist. Histopath. 13: 1037–1048.

    CAS  Google Scholar 

  • Crescitelli F. (1991) Adaptations of visual pigments to the photic environment of the deep sea. J. Exp. Zool. Suppl. 5: 66–75.

    Google Scholar 

  • Cronin T.W., Shashar N. (2001) The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle. J. Exp. Biol. 204: 2461–2467.

    PubMed  CAS  Google Scholar 

  • Curio E. (1975) The Ethology of Predation. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • de Miguel Villegas E., Doldan Dans M.J., Paz-Andrade Castillo, C., Alvarez R.A. (1997) Development of the eye in the turbot Psetta maxima (Teleostei), from hatching through metamorphosis. J. Morphol. 233: 31–42.

    Article  Google Scholar 

  • Deutschlander M.E., Greaves D.K., Haimberger T.J., Hawryshyn C.W. (2001) Functional mapping of ultraviolet photosensitivity during metamorphic transitions in a salmonid fish, Oncorhynchus mykiss. J. Exp. Biol. 204: 2401–2413.

    PubMed  CAS  Google Scholar 

  • Douglas R.H., Partridge J.C., Marshall N.J. (1998) The eyes of deep-sea fish I: Lens pigmentation, tapeta and visual pigments. Progr. Ret. Eye Res. 17: 597–636.

    Article  CAS  Google Scholar 

  • Dunbrack R.L., Dill L.M. (1984) Three dimensional prey reaction field of the juvenile coho salmon (Oncorhychus kisutch). Can. J. Fish. Aquat. Sci. 41: 1176–1182.

    Article  Google Scholar 

  • Engström K. (1963) Cone types and cone arrangements in teleost retinae. Acta Zoologica 44: 179–241.

    Article  Google Scholar 

  • Engström K., Ahlbert I.-B. (1963) Cone types and cone arrangements in the retina of some flatfishes. Acta Zoologica 44: 119–129.

    Article  Google Scholar 

  • Es-Sounni A., Klyne M.-A., Dutil J.-D., Ali M.A. (1987) Retinal cone movements in the yellow eel. Zool. Anz. 219: 377–381.

    Google Scholar 

  • Evans B.I. (1986) Strategies and Tactics of Search Behavior in Salmonid and Centrarchid Planktivorous Fish. Ph.D. Diss., University of Kansas, Systematics and Ecology, p 83.

    Google Scholar 

  • Evans B.I., Fernald R.D. (1990) Metamorphosis and fish vision. J. Neurobiol, 21: 1037–1052.

    Article  PubMed  CAS  Google Scholar 

  • Evans B.I., Fernald R.D. (1993) Retinal transformation at metamorphosis in the winter flounder (Pseudopleuronectes americanas). Vis. Neurosci. 10: 1055–1064.

    Article  PubMed  CAS  Google Scholar 

  • Evans B.I., Fernald R.D., Harosi, E. (1993) The photoreceptor spectral absorbance in larval and adult winter flounder (Pseudopleuronectes americanas). Vis. Neurosci. 10: 1065–1071.

    Article  PubMed  CAS  Google Scholar 

  • Evans B.L., O’Brien W.J. (1988) A re-evaluation of the search cycle of the planktivorous Arctic grayling (Thymallus arcticus), Can. J. Fish. Aquat. Sci. 45: 187–192.

    Article  Google Scholar 

  • Fernald R.D. (1988) Aquatic adaptations in fish eyes. In: Atem J., Fay J.R., Popper A.W., Tavolga W.N. (Eds.), Sensory Biology of Aquatic Animals. Springer-Verlag, NY, pp. 435–466.

    Chapter  Google Scholar 

  • Fernald R.D. (1989) Seeing through a growing eye. In: Perspectives in Neural Systems and Behavior. Alan R. Liss Inc., pp. 151–174.

    Google Scholar 

  • Forsell J., Ekström P., Novales Flamarique I., Holmqvist B. (2001) Expression of pineal unltraviolet-and green-like opsins in the pineal organ and retina of teleosts. J. Exp. Biol. 204: 2517–2525.

    PubMed  CAS  Google Scholar 

  • Frank T.M., Widder E.A. (1996) UV light in the deep sea: in situ measurements of downwelling irradiance in relation to visual threshold sensitivity of UV sensitive crustaceans. Mar. Fresh. Behav. Physiol. 27: 189–197.

    Article  Google Scholar 

  • Fröhlich E., Negishi K., Wagner H.-J. (1995) Patterns of rod proliferation in deep-sea fish retinae. Vis. Res. 35: 1977–1811.

    Article  Google Scholar 

  • Fuiman L.A., Webb P.W. (1988) Ontogeny of routine swimming activity and performance in zebra danios (Teleostei: Cyprinidae). Anim. Behav. 36: 250–261.

    Article  Google Scholar 

  • Fujimoto M., Arimoto T., Morishita E., Naitoh T. (1991) The background adaptation of the flatfish, Paralichthys olivaceus. Physiol. Behav. 50: 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Gordon W.C., Bazan N.G. (1997) Retina. In: Harding J.J. (Ed.), Biochemistry of the Eye. Chapman & Hall, London, pp. 144–275.

    Google Scholar 

  • Grinstead B.G. (1965) Vertical distribution of white crappie in the Buncombe Creek arm of Lake Texoma. Bulletin, 3. Oklahoma Fishery Research Laboratory, Norman Oklahoma.

    Google Scholar 

  • Grun G. (1975) Structural basis of the functional development of the retina in the cichlid Tilapia leucosticta (Teleostei). J. Embryol. Exp. Morph. 33: 243–257.

    PubMed  CAS  Google Scholar 

  • Hagedorn M.M., Fernald R.D. (1992) Retinal growth and cell addition during embryogenesis in the teleost, Haplochromis burtoni. J. Comp. Neurol. 320: 1–16.

    Article  Google Scholar 

  • Hagedorn M.M., Mack A., Evans B.I., Fernald R.D. (1998) The embryogenesis of rod photoreceptors in the cichlid retina, Haplochromis burtoni. Dev. Brain Res. 108: 217–227.

    Article  CAS  Google Scholar 

  • Harosi E., Hashimoto Y. (1983) Ultraviolet visual pigment in a vertebrate: A tetrachromatic cone system in the dace. Science 222: 1021–1023.

    Article  PubMed  CAS  Google Scholar 

  • Harris J.E. (1938) The role of the fins in the equilibrium of the swimming of fish and the role of the pelvic fins. J. Exp. Biol. 15: 32–47.

    Google Scholar 

  • Hawryshyn C.W. (1997) Vision. In: Evans D. (Ed.), Physiology of Fishes, CRC Press, Boca Raton.

    Google Scholar 

  • Hawryshyn C.W., Arnold M.G., Chaisson D.J., Martin P.C. (1989) The ontogeny of ultraviolet photosensitivity in rainbow trout (Salmo gairdneri). Vis. Neurosci. 2: 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Hawryshyn C.W., McFarland W.N. (1987) Cone photoreceptor mechanisms and the detection of polarized light in fish. J. Comp. Physiol. A. 160: 459–465.

    Article  Google Scholar 

  • Helvik J.V., Drivenes O., Harboe T., Seo H.-C. (2001) Topography of different photoreceptor cell types in the larval retina of Atlantic halibut (Hippoglossus hippoglossus). J. Exp. Biol. 204: 2553–2559.

    PubMed  CAS  Google Scholar 

  • Hollenberg M.J., Spira A.W. (1973) Human retinal development: ultrastructure of the outer retina. Am. J. Anat. 137: 357–385.

    Article  PubMed  CAS  Google Scholar 

  • Hope A.J., Partridge J.C., Dulai K., Hunt D.M. (1997) Mechanisms of wavelength tuning in the rod opsins of deep-sea fishes. Proc. Roy. Soc. Lond. B 264: 155–163.

    Article  Google Scholar 

  • Howick G.L., O’Brien W.J. (1983) Piscivorous feeding behavior of largemouth bass: An experimental analysis. Trans. Am. Fish. Soc. 112: 508–516.

    Article  Google Scholar 

  • Jerlov N.G. (1968) Optical Oceanography. Elsevier Publishing Co., Amsterdam.

    Google Scholar 

  • Johns P.R. (1982) Formation of photoreceptors in larval and adult goldfish. J. Neurosci. 2: 178–198.

    PubMed  CAS  Google Scholar 

  • Johns P.R., Fernald R.D. (1981) Genesis of rods in teleost fish retina. Nature 293: 141–142.

    Article  PubMed  CAS  Google Scholar 

  • Johns P.R., Rusoff A.C., Dubin M.W. (1979) Postnatal neurogenesis in the kitten retina. J. Comp. Neurol. 187: 545–556.

    Article  PubMed  CAS  Google Scholar 

  • Julian D., Ennis K., Korenbrot J.I. (1998) Birth and fate of proliferative cells in the inner nuclear layer of the mature fish retina. J. Comp. Neurol. 394: 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Kropf A. (1972) The structure and reactions of visual pigments. In: Fuortes M.G.E (Ed.), Handbook of Sensory Physiology, Vol. VII/2. Springer, Berlin, pp. 239–278.

    Google Scholar 

  • Kunz Y.W. (1980) Cone mosaics in teleost retina: changes during light and dark adaptation. Experientia 36: 1371–1374.

    Article  PubMed  CAS  Google Scholar 

  • Kunz Y.W, Callaghan E. (1989) Embryonic fissures in teleost eyes and their possible role in detection of polarized light. Trans. Am. Fish. Soc. 118: 195–202.

    Article  Google Scholar 

  • Kunz Y.W., Ni Shuilleabhain M., Callaghan E. (1985) The eye of the venomous marine teleost Trachinus vipera with special reference to the structure and ultrastructure of visual cells and pigment epithelium. Exp. Biol. 43: 161–178.

    PubMed  CAS  Google Scholar 

  • Kvenseth A.M., Pittman K., Helvik J.V. (1996) Eye development in Atlantic halibut Hippoglossus hippoglossus): differentiation and development of the retina from early yolk sac stages through metamorphosis. Can. J. Fish. Aquat. Sci. 53: 2524–2532.

    Article  Google Scholar 

  • Lampert W. (1993) Ultimate causes of diel vertical migration of zooplankton: New evidence for the predator avoidance hypothesis. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 79–88.

    Google Scholar 

  • Lampert W., Sommer U. (1997) Limnoecology: The Ecology of Lakes and Streams, Oxford University Press, New York.

    Google Scholar 

  • Larison K.D., Bremiller R. (1990) Early onset of phenotype and cell patterning in the embryonic zebrafish retina. Devel. 109: 567–576.

    CAS  Google Scholar 

  • Levine J.S., MacNichol E.F. Jr. (1979) Visual pigments in teleost fishes: Effects of habitat, microhabitat, and behavior on visual system evolution. Sensory Processes 3: 95–131.

    PubMed  CAS  Google Scholar 

  • Levine J.S., MacNichol E.F. Jr. (1982) Color vision in fishes. Sci. Am. 246: 140–149.

    Article  Google Scholar 

  • Locket N.A. (1977) Adaptations to the deep-sea environment. In: Crescitelli F. (Ed.), Handbook of Sensory Physiology. Springer, New York, pp. 161–184.

    Google Scholar 

  • Loew E., Dartnall H.J.A. (1976) Vitamin Al/A2-based pigment mixtures in cones of the rudd. Vis. Res. 16: 891–896.

    Article  PubMed  CAS  Google Scholar 

  • Loew E., Lythgoe J.N. (1978) The ecology of cone pigments in teleost fish. Vis. Res. 18: 715–722.

    Article  PubMed  CAS  Google Scholar 

  • Lyall A.H. (1957) Cone arrangements in the teleost retina. J. Microsc. Sci. 98: 189–201.

    Google Scholar 

  • Lythgoe J.N. (1972) The adaptation of visual pigments to their photic environment. In: Dartnell H.J.A. (Ed.), Handbook of Sensory Physiology, Vol. VII, Part 1. Springer-Verlag, Berlin, pp. 566–603.

    Google Scholar 

  • Lythgoe J.N. (1979) The Ecology of Vision. Clarendon Press, Oxford.

    Google Scholar 

  • Lythgoe J.N. (1984) Visual pigments and environmental light. Vis. Res. 24: 1539–1550.

    Article  PubMed  CAS  Google Scholar 

  • Mann I.C. (1964) The Development of the Human Eye. 3rd ed.. British Medical Association, London.

    Google Scholar 

  • Marks W.B. (1965) Visual pigments in single goldfish cones. J. Physiol. 178: 14–32.

    PubMed  CAS  Google Scholar 

  • Marshall N.B. (1971) Explorations in the Life of Fishes. Harvard University Press, Cambridge, London.

    Google Scholar 

  • Marshall N.B., Thines G.L. (1958) Studies of the brain, sense organs and light sensitivity of a blind cave fish (Typhlogarra widdowsoni) from Iraq. Proc. Zool. Soc. Lond. 131: 441–457.

    Google Scholar 

  • McFall-Ngai M.J. (1990) Crypsis in the pelagic environment. Amer. Zool. 30: 175–188.

    Google Scholar 

  • Meyer-Rochow V.B., Tiang M.K. (1978) Visual behavior, eye and retina of the parasitic fish Carapus mourlani. Biol. Bull. 155: 576–585.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Rochow V.B., Klyne M.A. (1982) Retinal organisation of the eyes of three nototheniid fishes from the Ross Sea (Antarctica). Gegenbaurs morph. Jahrb. Leipzig 128(5)S: 762–777.

    CAS  Google Scholar 

  • Meyer-Rochow V.B., Coddington P.E. (2003) Eyes and vision of the New Zealand torrentfish Cheimarrichthys fosteri Von Haast (1874): Histology, photochemistry and electrophysiology. In: Val A.L, Kapoor B.G. (Eds.), Fish Adaptations. Oxford and IBH Publ. And M/s Science Publ., Enfield, New Hampshire and Plymouth, UK, pp. 339–383.

    Google Scholar 

  • Munk O. (1977) The visual cells and retinal tapetum of the foveate deep-sea fish Scopelosaurus lepidus (Teleostei). Zoomorphologie 87: 21–49.

    Article  Google Scholar 

  • Munk O. (1981) On the cones of the mesopelagic teleost Trachipterus trachipterus (Gmelin, 1789). Vidensk. Meddr dansk naturh. Foren 143: 101–111.

    Google Scholar 

  • Munk O. (1982) Cones in the eye of the deep-sea teleost Diretmus argenteus. Vis. Res. 22: 179–481.

    Article  PubMed  CAS  Google Scholar 

  • Munk O. (1989) Duplex retina in the mesopelagic deep-sea teleost Lestidiops affinis (Ege 1930). Acta Zoologica 70: 143–149.

    Article  Google Scholar 

  • Munk O. (1990) Changes in the visual layer of the duplex retina during growth of the eye of a deep-sea teleost, Gempylus serpens Cuvier, 1829. Acta Zoologica 71: 89–95.

    Article  Google Scholar 

  • Nag T.C., Bhattacharjee J. (1989) Retinal organisation in a hill-stream cyprinid, Crossocheilus latius latius Hamilton. Exp. Biol. 48: 197–202.

    PubMed  CAS  Google Scholar 

  • Nathans J., Hogness D.S. (1984) Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proc. Nat. Acad. Sci. USA 81: 4851–4855.

    CAS  Google Scholar 

  • Novales Flamarique I. (2000) The ontogeny of ultraviolet sensitivity, cone disappearance and regeneration in the sockeye salmon Oncorhyncus nerka. J. Exp. Biol. 203: 1161–1172.

    PubMed  CAS  Google Scholar 

  • Novales Flamarique I., Browman H.I. (2001) Foraging and prey-search behaviour of small juvenile rainbow trout (Oncorhyncus mykiss) under polarized light. J. Exp. Biol. 204: 2415–2422.

    Google Scholar 

  • Novales Flamarique I., Hawryshyn C.W. (1997) No evidence of polarization sensitivity in freshwater sunfish from multi-unit optic nerve recordings. Vis. Res. 37: 967–973.

    Article  PubMed  CAS  Google Scholar 

  • Novales Flamarique I., Hawryshyn C.W., Harosi, F. (1998) Double-cone internal reflection as a basis for polarization detection in fish. J. Opt. Soc. Am. A 15: 349–358.

    Article  Google Scholar 

  • Novales Flamarique I., Hendry A., Hawryshyn C.W. (1992) The photic environment of a salmonid nursery lake. J. Exp. Biol. 169: 121–141.

    Google Scholar 

  • O’Brien W.J. (1979) The predator-prey interaction of planktivorous fish and zooplankton. Am. Sci. 67: 572–581.

    Google Scholar 

  • O’Brien W.J., Browman H.I., Evans B.I. (1990) Search strategies of foraging animals. Am. Sci. 78: 152–160.

    Google Scholar 

  • O’Brien W.J., Evans B.I. (1991) Saltatory search behavior in five species of planktivorous fish. Verh.Internat. Verein. Limnol. 24: 2371–2376.

    Google Scholar 

  • O’Brien W.J., Evans B.I., Browman H.I. (1989) Search tactics and efficient foraging in planktivorous fish. Oecologia 80: 100–110.

    Article  Google Scholar 

  • O’Brien W.J., Evans B.I., Howick G.L. (1986) A new view of the predation cycle of a planktivorous fish, white crappie Pomoxis annularis. Can. J. Fish. Aquat. Sci. 43: 1894–1899.

    Article  Google Scholar 

  • O’Brien W.J., Loveless B.S., Wright D. (1984) Feeding ecology of young white crappie in a Kansas reservoir. N. Am. J. Fish. Soc. 4: 341–349.

    Article  Google Scholar 

  • Pankhurst N.W, (1982) Relation of visual changes to the onset of sexual maturation in the European eel Anguilla anguilla (L.). J. Fish Biol. 21: 127–140.

    Article  Google Scholar 

  • Pankhurst N.W. (1984) Retinal development in larval and juvenile European eel, Anguilla anguilla (l.). Can. J. Zool. 62: 335–343.

    Article  Google Scholar 

  • Pankhurst P.M., Pankhurst N.W., Montgomery J.C. (1993) Comparison of behavioral and morphological measures of visual acuity during ontogeny in a teleost fish, Forsterygion varium, Tripterygiidae (Forster, 1801). Brain Behav. Evol. 42: 178–188.

    Article  PubMed  CAS  Google Scholar 

  • Parkyn D.C., Hawryshyn C.W. (2000) Spectral and ultraviolet-polarisation sensitivity in juvenile salmonids: a comparative analysis using electrophysiology. J. Exp. Biol. 203: 1173–1191.

    PubMed  CAS  Google Scholar 

  • Partridge J.C., Archer S.N., Lythgoe J.N. (1988) Visual pigments in the individual rods of deep-sea fishes. J. Comp. Physiol. A. 162: 543–550.

    Article  CAS  Google Scholar 

  • Patruno M., Radaelli G., Mascarello F., Candia Carnevali M.D. (1998) Muscle growth in response to changing demands of functions in the teleost Sparus aurata (L.) during development from hatching to juvenile. Anat. Embryol. 198: 487–504.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiler E. (1986) Towards an explanation of the developmental strategy in leptocephalus larvae of marine teleost fishes. Env. Biol. Fish. 15: 3–13.

    Article  Google Scholar 

  • Pitcher T.J. (1980) Some ecological consequences of fish school volumes. Freshw. Biol. 10: 539–544.

    Article  Google Scholar 

  • Pitcher T.J., Turner J.R. (1986) Danger at dawn: experimental support for the twilight hypothesis in shoaling minnows. J. Fish Biol. 29: 59–70.

    Article  Google Scholar 

  • Raymond P.A. (1985) Cytodifferentiation of photoreceptors in larval goldfish: delayed maturation of rods. J. Comp. Neurol. 236: 90–105.

    Article  PubMed  CAS  Google Scholar 

  • Raymond P.A., Barthel L.K., Curran G. A. (1995) Developmental patterning of rod and cone photoreceptors in embryonic zebrafish. J. Comp. Neurol. 359: 537–550.

    Article  PubMed  CAS  Google Scholar 

  • Rowe M.P, Engheta N., Easter S.S. Jr., Pugh E.N. Jr (1994) Graded index model of a fish double cone exhibits differential polarization sensitivity. J. Opt. Soc. Am. A 11: 55–69.

    Article  Google Scholar 

  • Sandy J.M, Blaxter J.H.S. (1980) A study of retinal development in larval herring and sole. J. Mar. Biol. Assoc. U.K. 60: 59–71.

    Article  Google Scholar 

  • Schmitt E., Kunz Y.W. (1989) Retinal morphogenesis in the rainbow trout, Salmo gairdneri, Brain Behav. Evol. 34: 48–64.

    Article  PubMed  CAS  Google Scholar 

  • Schnapf J.L., Baylor D.A. (1987) How photoreceptor cells respond to light. Sci. Am. 255: 40–47.

    Article  Google Scholar 

  • Schultz E.J., Hoyer M.V., Canfield D. Jr. (1999) An index of biotic integrity: A test with limnological and fish data from sixty Florida lakes. Trans. Am. Fish. Soc. 128: 564–577.

    Article  Google Scholar 

  • Schwind R. (1999) Daphnia pulex swims towards the most strongly polarized light: a response that leads to,shore flight’. J. Exp. Biol. 202: 3631–3635.

    PubMed  Google Scholar 

  • Shand J., Archer S.A., Collin S.P. (1999) Ontogenetic changes in the retinal photoreceptor mosaic in a fish, the black bream, Acanthopagrus butcheri. J. Comp. Neurol. 412: 203–217.

    Article  PubMed  CAS  Google Scholar 

  • Shand J., Chin S.M., Harman A.M., Collin S.P. (2000) The relationship between the position of the retinal area centralis and feeding behavior in juvenile black bream Acanthopagrus butcheri (Sparidae: Teleostei). Phil. Trans. R. Soc. Lond. B Biol Sci 355: 1183–1186.

    Article  CAS  Google Scholar 

  • Shand J., Partridge J.C., Archer S.A., Pott G.W., Lythgoe J.N. (1988) Spectral absorbance changes in the violet/blue sensitive cones of the juvenile pollack, Pollachius pollachius. J. Comp. Physiol. A. 163: 699–703.

    Article  Google Scholar 

  • Sidman R.L. (1961) Histogenesis of mouse retina studies with 3H-thymidine. In: Smelser G.K. (Ed.), Structure of the Eye. Academic Press, N.Y., pp. 487–506.

    Google Scholar 

  • Stell W.K., Harosi F.I. (1976) Cone structure and visual pigment content in the retina of the goldfish. Vis. Res. 16: 647–657.

    Article  PubMed  CAS  Google Scholar 

  • Stenkamp D.L., Hisatomi O., Barthel L.K., Tokunaga F., Raymond P.A. (1996) Temporal expression of rod and cone opsins in embryonic goldfish retina predicts the spatial organization of the cone mosaic. Invest. Ophthalmol. Vis. Sci. 37: 363–376.

    PubMed  CAS  Google Scholar 

  • Stryer L. (1991) Visual excitation and recovery Visual excitation and recovery. J. Biol. Chem. 266: 10711–10714.

    PubMed  CAS  Google Scholar 

  • Vinyard G. L., O’Brien W.J. (1976) Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus). J. Fish. Res. Board Can. 33: 2845–2849.

    Article  Google Scholar 

  • Vogel J.A., Beauchamp D.A. (1999) Effects of light, prey size, and turbidity on reaction distance of lake trout (Salvelinus namaycush) to salmonid prey. Can. J. Fish. Aquat. Sci. 56: 1293–1297.

    Google Scholar 

  • Wagner H.-J. (1975) Comparative analysis of the patterns of receptor and horizontal cells in teleost fishes. In: Ali M.A. (Ed.), Vision in Fish. Plenum Press, NY, pp 517–524.

    Google Scholar 

  • Wagner H.-J., Fröhlich E., Negishi K., Collin S.P. (1998) The eyes of deep-sea fish II. Functional morphology of the retina. Progr. Ret. Eye Res. 17: 637–685.

    Article  CAS  Google Scholar 

  • Wahl C. (1994) Periodic cone twists in the walleye Stizostedion vitreum; a new type of retinomotor activity. Vis. Res. 34: 1148.

    Article  Google Scholar 

  • Walls G.L. (1942) The Vertebrate Eye and Its Adaptive Radiation. Hafner Publishing Company, New York, London.

    Book  Google Scholar 

  • Wan J., Stenkamp D.L. (2000) Cone mosaic development in the goldfish retina is independent of rod neurogenesis and differentiation. J. Comp. Neurol. 423: 227–242.

    Article  PubMed  CAS  Google Scholar 

  • Waterman T. H., Forward R.B. Jr. (1972) Field demonstration of polarotaxis in the fish Zenarchopterus. J. Exp. Zool. 180: 33–54.

    Article  Google Scholar 

  • Wehner R. (2001) Polarization vision-a uniform sensory capacity? J. Exp. Biol. 204: 2589–2596.

    PubMed  CAS  Google Scholar 

  • Wetzel R.G. (1983) Limnology. 2nd ed. Saunders College Publishing, Philadelphia, New York.

    Google Scholar 

  • Wu D.M., Schneiderman T, Burgett P., Gokhale P, Barthel L., Raymond P.R. (2001) Cones regenerate from retinal stem cells sequestered in the inner nuclear layer of adult goldfish retina. Invest. Ophthalmol. Vis. Sci. 42: 2115–2124.

    PubMed  CAS  Google Scholar 

  • Wulliman M.F. (1997) The central nervous system. In: Evans D. (Ed.), Physiology of Fishes. CRC Press, Boca Raton, pp. 245–282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Evans, B.I. (2004). A Fish’s Eye View of Habitat Change. In: von der Emde, G., Mogdans, J., Kapoor, B.G. (eds) The Senses of Fish. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1060-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1060-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3779-2

  • Online ISBN: 978-94-007-1060-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics