Skip to main content

Part of the book series: NATO Science Series ((NAIV,volume 31))

Abstract

This paper will consider the influences of temperature on CO2-evolution not only from the perspective of a direct, causal relationship. It also looks for factors, which trigger soil respiration via their strong relation on temperature. Such effects often act at the cellular or sub-cellular level. The vast extension of permafrost in the northern hemisphere has great importance for the global carbon cycle. Permafrost regions have been identified as a main resource for carbon and thus for CO2-evolution, especially if climatic patterns in this area change drastically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moorhead, D.L. and Reynolds, J.F. (1993) Effects of climate change on decomposition in Arctic tussock tundra: a modelling synthesis, Arctic Alpine Research 25, 403–412.

    Article  Google Scholar 

  2. Waelbroeck, C. and Louis, J.-F. (1995) Sensitivity analysis of a model of CO2 exchange in tundra ecosystems by the adjoint method, J. Geophysical Research 100 D2, 2801–2816.

    Article  CAS  Google Scholar 

  3. Rastetter, E.B., McKane, R.B., Shaver, G.R., Nadelhoffer, K.J. and Giblin, A. (1997) Analysis of CO2, temperature, and moisture effects on carbon storage in Alaskan arctic tundra using a general ecosystem model, in Oechel, W.C., Callaghan, T., Gilmanov, T., Holten, J.I., Maxwell, B., Molau, U and Sveinbjörnsson, B. (eds.), Global Change and Arctic Terrestrial Ecosystems, Springer-Verlag, New York, Ecol. Studies 124, 437–451.

    Chapter  Google Scholar 

  4. Zamolodchikov, D.G., Karelinm D,V, and Ivashchenko, A.I. (1997) Carbon balance of tundra landscape in central Siberia: observations, simulation and GIS, J. General Biology 58, 15–34.

    Google Scholar 

  5. Lloyd, C.R. (2001) On the physical controls of the carbon dioxide balance at a high arctic site in Svalbard. Theoretical Applied Climatology 70, 167–182.

    Article  Google Scholar 

  6. Waelbroeck, C., Monfray, P., Oechel, W.C., Hastings, S. and Vourlitis, G. (1997) The impact of permafrost thawing on the carbon dynamics of tundra, Geophysical Research Letters 24, 229–232.

    Article  CAS  Google Scholar 

  7. Oechel, W.C., Vourlitis, G.L., Hastings, S.J., Zulueta, R.C., Hinzman, L. and Kane, D. (2000) Acclimatization of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming, Nature 406, 978–981.

    Article  CAS  Google Scholar 

  8. 8. Overduin, P.P. and Young, K.L. (1997) The effect of freezing on soil moisture and nutrient distribution at Levinson-Lessing Lake, Taymyr Peninsula, Siberia. CRREL Special Report 97-10, 327–333.

    Google Scholar 

  9. Bölter, M., Blume, H.-P. (2002) Soils as habitats for microorganisms, in: Beyer, L. and Bölter, M. (eds.), Geoecology of Antarctic ice-free coastal landscapes, Springer-Verlag, Berlin Heidelberg, Ecol. Studies 154, 285–302.

    Chapter  Google Scholar 

  10. 10. Fuchs, G. and Kröger, A. (1999) Growth and nutrition, in Lengeier, J.W., Drews, G. and Schlegel, H.G. (eds.), Biology of the Prokaryotes, Thieme, Stuttgart, pp. 88–109.

    Google Scholar 

  11. Lösch, R. (2000) Wasserhaushalt der Pflanzen, Quelle & Meyer Verlag, Wiebeisheim.

    Google Scholar 

  12. 12. Miller, P.C., Stoner, W.A. and Ehleringer, J.R. (1978) Some aspects of water relations of arctic and alpine regions, in Tieszen, L. (ed.), Vegetation and Production of an Alaskan Arctic Tundra, Springer-Verlag, New York, Ecol. Studies 29, 343–357.

    Chapter  Google Scholar 

  13. Caldwell, M.M., Johnson, D.A. and Fareed, M. (1978) Constraints on tundra productivity: photosynthetic capacity in relation to solar radiation utilization and water stress in arctic and alpine tundras, in Tieszen, L. (ed.), Vegetation and Production of an Alaskan Arctic Tundra, Springer-Verlag, New York, Ecol. Studies 29, 323–342.

    Chapter  Google Scholar 

  14. Billings, W.D. and Bliss L.C. (1959) An alpine snowbank environment and its effects on vegetation, plant development, and productivity, Ecology 40, 388–397.

    Article  Google Scholar 

  15. Scott, D. and Billings, W.D. (1964) Effects of environmental factors on standing crop and productivity of an alpine tundra, Ecological Monographs 34, 243–270.

    Article  Google Scholar 

  16. Hillier, R.D. (1970) The Influence of Water on Growth and Development of Alpine Plants in the Medicine Bow Range, Wyoming. PhD Thesis, Duke University.

    Google Scholar 

  17. Teeri, J.A. (1973) Polar desert adaptations of high arctic plant species, Science 179, 496–497.

    Article  CAS  Google Scholar 

  18. Booth, I.R. (1999) Adaptation to extreme environments, in Lengeier, J.W., Drews, G. and Schlegel, H.G. (eds.), Biology of the Prokaryotes, Georg Thieme Verlag, Stuttgart, pp. 652–671.

    Google Scholar 

  19. Gisi, U. (1997) Bodenökologie, Thieme Verlag, Stuttgart.

    Google Scholar 

  20. Funk, D.W., Pullman, E.R., Peterson, K.M., Crill, P.M. and Billings, W.D. (1994) The influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms, Global Biogeochemical Cycles 8, 271–278.

    Article  CAS  Google Scholar 

  21. Simankova, M.V., Kotsyurbenkom O.R., Stackebrandtm E., Kostrikinam N.A., Lysenkom A.M., Osipovm G.A. and Nozhevnikova, A.N. (2000) Acetobacterium tundrae sp. nov., a new psychrophilic acetogenic bacterium from tundra soil, Archiv Mikrobiologie 174, 440–447.

    Article  CAS  Google Scholar 

  22. Flanagan, P.W. (1986) Substrate quality influences on microbial activity and mineral availability in taiga forest floors, in Van Cleve, K., Chapin, F.S., Flanagan, P.W., Viereck, L.A. and Dyrness, C.T. (eds.), Forest Ecosystems in the Alaskan Taiga. A Synthesis of Structure and Function, Springer-Verlag, Berlin Heidelberg, Ecol Studies 57, 138–151.

    Chapter  Google Scholar 

  23. Nadelhoffer, K.J., Shaver, G.R., Giblin, A. and Rastetter, E.B. (1997) Potential impacts of climate change on nutrient cycling, decomposition, and productivity in Arctic ecosystems, in Oechel, W.C, Callaghan, T., Gilmanov, T., Holten, J.I., Maxwell, B., Molau, U., Sveinbjörnsson, B. (eds.), Global Change and Arctic Terrestrial Ecosystems. Springer-Verlag, New York, Ecol. Studies 124, 349–364.

    Chapter  Google Scholar 

  24. Dormann, C.F. and Woodin, S.J. (2002) Climate change in the Arctic: unsing plant functional types in a meta-analysis of field experiments, Functional Ecology 16, 4–17.

    Article  Google Scholar 

  25. Illeries, L. and Jonasson, S. (1999) Soil plant CO2 emission in response to variations in soil moisture and temperature and to amendment with nitrogen, phosphorus, and carbon in northern Scandinavia, Arctic Antarctic Alpine Research 31, 264–271.

    Article  Google Scholar 

  26. Billings, W.D., Peterson, K.M., Shaver, G.R. and Trent, A.W. (1977) Root growth, respiration, and carbon dioxide evolution in an arctic tundra soil, Arctic Alpine Research 9, 127–135.

    Article  Google Scholar 

  27. Atkin, O.K., Edwards, E.J. and Loveys, B.R. (2000) Response of root respiration to changes in temperature and its relevance to global warming, New Phytology. 147, 141–154.

    Article  CAS  Google Scholar 

  28. Billings, W.D., Peterson, K.M. and Shaver, G.R. (1978) Growth, turnover, and respiration rates of roots and tillers in tundra graminoids, in Tieszen, L. (ed.), Vegetation and Production Ecology of an Alaskan Arctic Tundra. Springer-Verlag, New York, pp. 415–434.

    Chapter  Google Scholar 

  29. Kucera, C.L. and Kirkham, D.R. (1971) Soil respiration studies in tall grass prairie in Missouri, Ecology 52, 912–915.

    Article  CAS  Google Scholar 

  30. Clinton, B.D. and Vose, J.M. (1999) Fine rot respiration immature eastern white pine (Pinus strobes) in situ: the importance of CO2 in controlled environments, Tree Physiol 19,475–479.

    Article  Google Scholar 

  31. Brooks, P.D., Schmidt, S.K. and Williams, M.W. (1997) Winter production of CO2 and N2O from alpine tundra: environmental controls and relationship to inter-system C and N fluxes, Oecologia 110, 403–413.

    Google Scholar 

  32. Grogan, P. and Chapin, F.S. III (1999) Arctic soil respiration: effects of climate and vegetation depend on season. Ecosystems 2, 451–459.

    Article  CAS  Google Scholar 

  33. Heal, O.W., Flanagan, P.W., French, D.D. and MacLean, S.F. Jr. (1981) Decomposition and accumulation of organic matter in tundra, in Bliss, L.C., Heal, O.W. and Moore, J.J. (eds.), Tundra Ecosystems: A Comparative Analysis. Cambridge University Press, Cambridge, pp. 587–633.

    Google Scholar 

  34. Bölter, M. (1991) Microbial mineralization in soils and on plant material from Antarctica, in

    Google Scholar 

  35. Weiler, G., Wilson, C.L., Severin, B.A.B. (eds.), International Conference on the Role of the Polar Regions in Global Change: Proceedings of a Conference Held June 11–15, 1990 at the University of Alaska Fairbanks, Geophys. Inst. Univ. Fairbanks Alaska, Vol. II, Fairbanks, pp. 418–422.

    Google Scholar 

  36. Christensen, T.R., Michelsen, A., Jonasson, S. and Schmidt, I.K. (1997) Carbon dioxide and methane exchange of a subarctic heath in response to climate change related environmental manipulations, Oikos 79: 34–44.

    Article  CAS  Google Scholar 

  37. Grogan, P. and Chapin, F.S. III (2000) Initial effects of environmental warming on above-and belowground components of net ecosystem CO2 exchange in arctic tundra, Oecologia 125, 512–520.

    Article  Google Scholar 

  38. Flanagan, P.W. and Bunnell, F.L. (1980) Microflora activities and decomposition, in Brown, J., Miller, P.C., Tieszen, L.L. and Bunnell, F.L. (eds.) An Arctic Ecosystem. The Coastal Tundra at Barrow, Alaska, Dowden, Hutchinson, Ross, Stroudsburg, pp. 291–334.

    Google Scholar 

  39. Clein, J.S. and Schimel, J.P. (1995) Microbial activity of tundra and taiga soils at sub-zero temperatures. Soil Biology Biochemistry 27, 1231–1234.

    Article  CAS  Google Scholar 

  40. Coyne, P.I. and Kelley, J.J. (1978) Meteorological assessment of CO2 exchange over an Alaskan arctic tundra, in Tieszen, L. (ed.), Vegetation and Production Ecology of an Alaskan Arctic Tundra, Springer-Verlag, New York, Ecol. Studies 29, 299–321.

    Chapter  Google Scholar 

  41. Robinson, C.H., Wookey, P.A., Parsons, A.N., Porter, J.A., Callaghan, T.V., Lee, J.A., Press, M.C. and Welker, J.M. (1995) Responses of plant litter decomposition and nitrogen mineralization to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath, Oikos 74, 503–512.

    Article  Google Scholar 

  42. Oechel, W.C., Vourlitis, G.L. (1994) The effects of climate change on land-atmosphere feedbacks in arctic tundra regions. TREE 9, 324–329.

    CAS  Google Scholar 

  43. Callaghan, T.V. and Jonasson, S. (1995) Arctic terrestrial ecosystems and environmental change, Philosophical Transactions Royal Society London (A) 352, 259–276.

    Google Scholar 

  44. Lipson, D.A., Shmidt, S.K. and Monson, R.K. (2000) Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass, Soil Biology Biochemistry 32, 441–448.

    Article  CAS  Google Scholar 

  45. Sturm, M. and Racine, C. and Tape, K. (2001) Increasing shrub abundance in the Arctic, Nature 411, 546–547.

    Article  CAS  Google Scholar 

  46. Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.-M., Hoegh-Guldberg, O. and Bairlein, F. (2002) Ecological responses to recent climate change, Nature 416, 389–395.

    Article  CAS  Google Scholar 

  47. Matsumoto, M., Saito, S., Ohmine, I. (2002) Molecular dynamics simulation of the ice nucleation and growth process leading to freezing water, Nature 416, 409–413.

    Article  CAS  Google Scholar 

  48. Luo, Y., Wan, S., Hui, D. and Wallace, L.L. (2001) Acclimatization of soil respiration to warming in a tall grass prairie, Nature 413, 622–625.

    Article  CAS  Google Scholar 

  49. Rustad, L. (2001) Matter of time on the prairie, Nature 413, 578–579.

    Article  CAS  Google Scholar 

  50. Lloyd, C.R. and Taylor, J.A. (1994) On the temperature dependence of soil respiration, Functional Ecology 8, 315–323.

    Article  Google Scholar 

  51. Harte, J., Torn, M.S., Chang, F.-R., Feifarek, B., Kinzing, A.P., Shaw, R. and Shen, K. (1995) Global warming and soil microclimate: results from a meadow-warming experiment, Ecological Applications 5, 132–150.

    Article  Google Scholar 

  52. Sveinbjörnsson, B., Davis, J., Abadie, W. and Butler, A. (1995) Soil carbon mineralization at different elevations in the Chugach Mountains of South-Central Alaska, U.S.A., Arctic Alpine Research 27, 29–37.

    Article  Google Scholar 

  53. Christensen, T.R. and Cox, P. (1995) Response of methane emission from arctic tundra to climate change: results from a model simulation, Tellus 47B, 301–309.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bölter, M., Möller, R., Müller-Lupp, W. (2003). Co2-Release from Permafrost Soils in Relation to Temperature Changes. In: Rasmussen, R.O., Koroleva, N.E. (eds) Social and Environmental Impacts in the North: Methods in Evaluation of Socio-Economic and Environmental Consequences of Mining and Energy Production in the Arctic and Sub-Arctic. NATO Science Series, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1054-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1054-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1669-1

  • Online ISBN: 978-94-007-1054-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics