Skip to main content

The role of hepatic stellate cells/myofibroblasts

  • Conference paper
Portal Hypertension in the 21st Century
  • 167 Accesses

Abstract

The recognition that HSC are provided with contractile properties represents a key acquisition in the knowledge of the biology of this cell typex1. Contraction of activated HSC occurs in vitro in response to different vasoconstrictors. This experimental evidence is representative of HSC contractile status in fibrotic liver, where contraction of activated HSC in response to various stimuli may have important implications in the pathogenesis of portal hypertension and in the contraction of mature scar tissue. Following the demonstration that culture-activated human and rat HSC are able to contract in response to different vasoconstrictors2, 3, the potential involvement of this cell type in the genesis and progression of portal hypertension has been postulated. The presence of a contractile cell type operating in liver sinusoids and in developing scar tissue reinforced the concept of a dynamic component for the increased intrahepatic resistance in cirrhotic liver modifiable by vasodilators4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pinzani M, Gentilini P. Biology of hepatic stellate cells and their possible relevance in the pathogenesis of portal hypertension in cirrhosis. Semin Liver Dis. 1999;19:397–410.

    Article  PubMed  CAS  Google Scholar 

  2. Pinzani M, Failli P, Ruocco C et al. Fat-storing cells as liver-specific pericytes: spatial dynamics of agonist-stimulated intracellular calcium transients. J Clin Invest. 1992;90:642–6.

    Article  PubMed  CAS  Google Scholar 

  3. Kawada N, Klein H, Decker K. Eicoesanoid-mediated contractility of hepatic stellate cells. Biochem J. 1992;285:367–71.

    PubMed  CAS  Google Scholar 

  4. Bhathal PS, Grossman HJ. Reduction of the increased portal vascular resistance of the isolated perfused cirrhotic rat liver by vasodilators. J Hepatol. 1985;1:325–37.

    Article  PubMed  CAS  Google Scholar 

  5. Ekataksin W, Kaneda K. Liver microvascular architecture: an insight into the pathophysiology of portal hypertension. Semin Liver Dis. 1999;19:359–82.

    Article  PubMed  CAS  Google Scholar 

  6. Pattanapen G, Noriko K, McCuskey RS, Ekataksin W. The porcine arachnocyte spectrum: panzonal polymorphism of hepatic stellate cell population as revealed by extensive reconstruction of confocal optic imaging. Hepatology. 2003;38:784A (abstract).

    Article  Google Scholar 

  7. Zhang JX, Pegoli W Jr, Clemens MG. Endothelin-1 induces direct constriction of hepatic sinusoids. Am J Physiol. 1994;266:G624–32.

    PubMed  CAS  Google Scholar 

  8. Zhang JX, Bauer M, Clemens MG. Vessel-and target cell-specific actions of endothelin-1 and endothelin-3 in rat liver. Am J Physiol. 1995;269:G269–77.

    PubMed  CAS  Google Scholar 

  9. Thimgan MS, Yee HF Jr. Quantitation of rat hepatic stellate cell contraction: stellate cells’ contribution to sinusoidal tone. Am J Physiol. 1999;277:G137–43.

    PubMed  CAS  Google Scholar 

  10. Rockey DC, Housset CN, Friedman SL. Activation-dependent contractility of rat hepatic lipocytes in culture and in vivo. J Clin Invest. 1993;92:1795–804.

    Article  PubMed  CAS  Google Scholar 

  11. Rockey DC, Weisiger RA. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology. 1996;24:233–40.

    Article  PubMed  CAS  Google Scholar 

  12. Bataller R, Nicolas JM, Gines P et al. Contraction of human hepatic stellate cells activated in culture: a role for voltage-operated calcium channels. J Hepatol. 1998;29:398–408.

    Article  PubMed  CAS  Google Scholar 

  13. Buck M, Kim OJ, Houglum K, Hassanein T, Chojkier M. c-Myb modulates transcription of the α-smooth muscle actin gene in activated hepatic stellate cells. Am J Physiol. 2000;278:G321–8.

    CAS  Google Scholar 

  14. Carloni V, Romanelli RG, Pinzani M, Laffi G, Gentilini P. Expression and function of integrin receptors for collagen and laminin in cultured human hepatic stellate cells. Gastroenterology. 1996;110:1127–36.

    Article  PubMed  CAS  Google Scholar 

  15. Racine-Samson L, Rockey DC, Bissell OM. The role of alpha 1 beta 1 integrin in wound contraction. A quantitative analysis of liver myofibroblasts in vivo and in primary culture. J Biol Chem. 1997;49:30911–17.

    Article  Google Scholar 

  16. Shibayama Y, Nakata K. Significance of septal fibrosis for disturbance of hepatic circulation. Liver. 1992;12:22–5.

    PubMed  CAS  Google Scholar 

  17. Wanless IR, Wong F, Blendis LM, Greig P, Heathcote EJ, Levy G. Hepatic and portal vein thrombosis in cirrhosis: possible role in the development of parenchymal extinction and portal hypertension. Hepatology. 1995;21:1238–47.

    PubMed  CAS  Google Scholar 

  18. Reichen J, Le M. Verapamil favorably influences hepatic microvascular exchange and function in rats with cirrhosis of the liver. J Clin Invest. 1986;78:448–55.

    Article  PubMed  CAS  Google Scholar 

  19. Marteau P, Ballet F, Chazouilleres O et al. Effect of vasodilators on hepatic microcirculation in cirrhosis: a study in the isolated perfused rat liver. Hepatology. 1989;9:820–3.

    Article  PubMed  CAS  Google Scholar 

  20. Kedzierski RM, Yanagisawa M. Endothelin system: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol. 2001;41:851–76.

    Article  PubMed  CAS  Google Scholar 

  21. Masaki T, Ninomiya H, Sakamoto A, Okamoto Y. Structural basis of the function of endothelin receptor. Mol Cell Biochem. 1999;190:153–6.

    Article  PubMed  CAS  Google Scholar 

  22. Gandhi CR, Stephenson K, Olson MS. Endothelin, a potent peptide agonist in the liver. J Biol Chem. 1990;265:17432–5.

    PubMed  CAS  Google Scholar 

  23. Roden M, Vierhapper H, Liener K, Waldhausl W. Endothelin-1-stimulated glucose production in vitro in the isolated perfused rat liver. Metabolism. 1992;41:290–5.

    Article  PubMed  CAS  Google Scholar 

  24. Thran-Thi T-A, Kawada N, Decker K. Regulation of endothelin-1 action on the perfused rat liver. FEBS Lett. 1993;318:353–7.

    Article  Google Scholar 

  25. Gandhi CR, Behal RH, Harvey SA, Nouchi TA, Olson MS. Hepatic effects of endothelin. Receptor characterization and endothelin-induced signal transduction in hepatocytes. Biochem J. 1992;287:897–904.

    PubMed  CAS  Google Scholar 

  26. Serradeil-Le Gal C, Jouneaux C, Sanchez-Bueno A et al. Endothelin action in rat liver. Receptors, free Ca2+ oscillations, and activation of glycogenolysis. J Clin Invest. 1991;87:133–8.

    Article  PubMed  CAS  Google Scholar 

  27. Rieder H, Ramadori G, Meyer zum Buschenfelde KH. Sinusoidal endothelial liver cells in vitro release endothelin: augmentation by transforming growth factor ⨿ and Kupffer cell-conditioned media. Klin Wochenschr. 1991;69:387–91.

    Article  PubMed  CAS  Google Scholar 

  28. Furoya S, Naruse S, Nakayama T, Nokihara K. Binding of 125I-endothelin-1 to fat-storing cells in rat liver revealed by electron microscopic radioautography. Anat Embryol. 1992;185:97–100.

    Article  Google Scholar 

  29. Gondo K, Ueno T, Masaharu S, Sakisaka S, Sata M, Tanikawa K. The endothelin-1 binding site in rat liver tissue: light-and electron-microscopic autoradiographic studies. Gastroenterology. 1993;104:1745–9.

    PubMed  CAS  Google Scholar 

  30. Housset CN, Rockey DC, Bissel OM. Endothelin receptors in rat liver: lipocytes as a contractile target for endothelin 1. Proc Natl Acad Sci USA. 1993;90:9266–70.

    Article  PubMed  CAS  Google Scholar 

  31. Pinzani M, Milani S, DeFranco R et al. Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells. Gastroenterology. 1996;110:534–48.

    Article  PubMed  CAS  Google Scholar 

  32. Rockey DC, Fouassier L, Chung JJ, Carayon A, Vallee P, Rey C, Housset C. Cellular localization of endothelin-l and increased production in liver injury in the rat: potential for autocrine and paracrine effects on stellate cells. Hepatology. 1998;27:472–80.

    Article  PubMed  CAS  Google Scholar 

  33. Gabriel A, Kuddus RH, Rao AS, Watkins WD, Ghandi CR. Superoxide-induced changes in endothelin (ET) receptors in hepatic stellate cells. J Hepatol. 1998;29:614–27.

    Article  PubMed  CAS  Google Scholar 

  34. Shao R, Yan W, Rockey DC. Regulation of endothelin-1 synthesis by endothelin-converting enzyme-l during wound healing. J Biol Chem. 1999;274:3228–34.

    Article  PubMed  CAS  Google Scholar 

  35. Reinehr RM, Kubitz R, Peters-Regehr T, Bode JG, Haussinger D. Activation of rat hepatic stellate cells in culture is associated with increased sensitivity to endothelin 1. Hepatology. 1998;28:1566–77.

    Article  PubMed  CAS  Google Scholar 

  36. Wang YZ, Pouyssegur J, Dunn MJ. Endothelin stimulates mitogen-activated protein kinase activity in mesangial cells through ET(A). J Am Soc Nephrol. 1994;5:1074–80.

    PubMed  CAS  Google Scholar 

  37. Mallat A., Fouassier F, Preaux AM et al. Growth inhibitory properties of endothelin-l in human hepatic myofibroblastic Ito cells: an endothelin B receptor-mediated pathway. J Clin Invest. 1995;96:42–9.

    Article  PubMed  CAS  Google Scholar 

  38. Mallat A, Preaux A-M, Serradeil-Le Gal C et al. Growth inhibitory properties of endothelin-1 in activated human hepatic stellate cells: a cyclic adenosine monophosphate-mediated pathway. J Clin Invest. 1996;98:2771–8.

    Article  PubMed  CAS  Google Scholar 

  39. Leivas A, Jimenez W, Bruix J et al. Gene expression of endothelin-l and ET(A) and ET(B) receptors in human cirrhosis: relationship with hepatic hemodynamics. J Vasc Res. 1998;35:186–93.

    Article  PubMed  CAS  Google Scholar 

  40. Rockey DC, Chung JJ. Endothelin antagonism in experimental hepatic fibrosis. Implications for endothelin in the pathogenesis of wound healing. J Clin Invest. 1996;98:1381–8.

    Article  PubMed  CAS  Google Scholar 

  41. Poo JL, Jimenez W, Maria Munoz R et al. Chronic blockade of endothelin receptors in cirrhotic rats: hepatic and hemodynamic effects. Gastroenterology. 1999;116:161–7.

    Article  PubMed  CAS  Google Scholar 

  42. Cho JJ, Hocher B, Herbst H et al. An oral endothelin-A receptor antagonist blocks collagen synthesis and deposition in advanced rat liver fibrosis. Gastroenterology. 2000;118:1169–78.

    Article  PubMed  CAS  Google Scholar 

  43. Caligiuri A, Glaser S, Rodgers RE et al. Endothelin-1 inhibits secretin-stimulated ductal secretion by interacting with ETA receptors on large cholangiocytes. Am J Physiol. 1998;275:G835–46.

    PubMed  CAS  Google Scholar 

  44. Bataller R, Gines P, Nicolas JM et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000;118:1149–56.

    Article  PubMed  CAS  Google Scholar 

  45. Bataller R, Sancho-Bru P, Gines P et al. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology. 2003;125:117–25.

    Article  PubMed  CAS  Google Scholar 

  46. Bataller R, Schwabe RF, Choi YH et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest. 2003;112:1383–94.

    PubMed  CAS  Google Scholar 

  47. Paizis G, Cooper ME, Schembri JM, Tikellis C, Burrell LM, Angus PW. Up-regulation of components of the renin-angiotensin system in the bile duct-ligated rat liver. Gastroenterology. 2002;123:1667–76.

    Article  PubMed  CAS  Google Scholar 

  48. Paizis G, Gilbert RE, Cooper ME et al. Effect of angiotensin II type 1 receptor blockade on experimental hepatic fibrogenesis. J Hepatol. 2001;35:376–85.

    Article  PubMed  CAS  Google Scholar 

  49. Bataller R, Nicolas JM, Gines P et al. Arginine vasopressin induces contraction and stimulates growth of cultured human hepatic stellate cells. Gastroenterology. 1997;113:615–24.

    Article  PubMed  CAS  Google Scholar 

  50. Coughlin SR. Thrombin signalling and protease-activated receptors. Nature. 2000;407:258–64.

    Article  PubMed  CAS  Google Scholar 

  51. Marra F, Grandaliano G, Valente AJ, Abboud HE. Thrombin stimulates proliferation of liver fat-storing cells and expression of monocyte chemotactic protein-1: potential role in liver injury. Hepatology. 1995;22:780–7.

    PubMed  CAS  Google Scholar 

  52. Marra F, DeFranco R, Grappone C et al. Expression of the thrombin receptor in human liver: up-reggulation during acute and chronic injury. Hepatology. 1998;27:462–71.

    Article  PubMed  CAS  Google Scholar 

  53. Pinzani M, Carloni V, Marra F, Riccardi D, Laffi G, Gentilini P. Biosynthesis of platelet-activating factor and its 10-acyl analogue by liver fat-storing cells. Gastroenterology. 1994;106:1301–11.

    PubMed  CAS  Google Scholar 

  54. Titos E, Claria J, Bataller R et al. Hepatocyte-derived cysteinyl leukotrienes modulate vascular tone in experimental cirrhosis. Gastroenterology. 2000;119:794–805.

    Article  PubMed  CAS  Google Scholar 

  55. Graupera M, Garcia-Pagan JC, Titos E et al. 5-Lipoxygenase inhibition reduces intrahepatic vascular resistance of cirrhotic rat livers: a possible role of cysteinyl-leukotrienes. Gastroenterology. 2002;122:387–93.

    Article  PubMed  CAS  Google Scholar 

  56. Goulis J, Patch D, Burroughs AK. Bacterial infection in the pathogenesis of variceal bleeding. Lancet. 1999;353:139–42.

    Article  PubMed  CAS  Google Scholar 

  57. Wiest R, Tsai M-H, Groszmann R. Octreotide potentiates PKC-dependent vasoconstrictors in portal-hypertensive rats. Gastroenterology. 2001;120:975–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pinzani, M. (2004). The role of hepatic stellate cells/myofibroblasts. In: Groszmann, R.J., Bosch, J. (eds) Portal Hypertension in the 21st Century. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1042-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1042-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3774-7

  • Online ISBN: 978-94-007-1042-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics