Skip to main content

Endothelial-derived nitric oxide as a marker for healthy endothelium

  • Conference paper
Portal Hypertension in the 21st Century
  • 170 Accesses

Abstract

In the past decade the importance of the vascular endothelium as a multi-functional regulator of vascular smooth muscle physiology and pathophysiology has been appreciated. Indeed, the endothelium responds to hemodynamic stimuli (pressure, shear stress and wall strain) and locally manufactured mediators (such as bradykinin, prostaglandins and angiotensin) and in turn can release factors that can influence the adhesion and aggregation of circulating cells to the endothelium and the tone of vascular smooth muscle. In many diseases, including cirrhosis, atherosclerosis or diabetes, endothelial dysfunction manifested as an impairment of nitric oxide (NO) production may be an early hallmark of disease and a treatable entity. In this chapter the importance of NO as a mediator of vascular function and potential mechanisms leading to endothelial dysfunction will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furchgott RF, Zawadski JV. The obligatory role of the endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1981;288:373-6.

    Google Scholar 

  2. Huang PL, Huang Z, Mashimo H et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase [See comments]. Nature 1995;377:239–42.

    Article  PubMed  CAS  Google Scholar 

  3. Shesely EG, Maeda N, Kim HS et al. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA. 1996;93:13176–81.

    Article  PubMed  CAS  Google Scholar 

  4. Kuchan MJ, Frangos JA. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol. 1994;266:C628–36.

    PubMed  CAS  Google Scholar 

  5. Fleming I, Bauersachs J, Fisslthaler B, Busse R. Ca2+-independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress. Circ Res. 1998;82:686–95.

    Article  PubMed  CAS  Google Scholar 

  6. Fulton D, Gratton JP, Sessa We. Post-translational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough? J Pharmacol Exp Ther. 2001;299:818–24.

    PubMed  CAS  Google Scholar 

  7. Smart EJ, Graf GA, McNiven MA et al. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell BioI. 1999;19:7289–304.

    CAS  Google Scholar 

  8. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T. Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Bioi Chern. 1996;271:22810–14.

    Article  CAS  Google Scholar 

  9. Garcìa-Cardeñla G, Fan R, Stern DF, Liu J, Sessa We. Endothelial nitric oxide is regulated by tyrosine phosphorylation and interacts with caveolin-1. J Biol Chem. 1996;271:27237–40.

    Article  Google Scholar 

  10. Ju H, Zou R, Venema VI, Venema Re. Direct interaction of endothelial nitric-oxide synthase and caveolin-l inhibits synthase activity. J Biol Chem. 1997;272:18522–5.

    Article  PubMed  CAS  Google Scholar 

  11. Feron O, Dessy C, Opel OJ, Arstall MA, Kelly RA, Michel T. Modulation of the endothelial nitric-oxide synthase-caveolin interaction in cardiac myocytes. Implications for the autonomic regulation of heart rate. J Biol Chem. 1998;273:30249–54.

    Article  PubMed  CAS  Google Scholar 

  12. Bucci M, Gratton JP, Rudie RD et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med. 2000;6:1362–7.

    Article  PubMed  CAS  Google Scholar 

  13. Gratton JP, Lin MI, Yu J et al. Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell. 2003;4:31–9.

    Article  PubMed  CAS  Google Scholar 

  14. Razani B, Engelman JA, Wang XB et al. 2001. Caveolin-l null mice are viable but show evidence of hyper proliferative and vascular abnormalities. J Biol Chem. 2001; 276:38121–38.

    Article  PubMed  CAS  Google Scholar 

  15. Drab M, Verkade P, Elger M et al. 2001. Loss of caveolac, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science. 2001 293:2449–52.

    Article  PubMed  CAS  Google Scholar 

  16. Razani B, Woodman SE, Lisanti MP et al. Caveolae: from cell biology to animal physiology. Pharmacol Rev. 2002;54:431–67.

    Article  PubMed  CAS  Google Scholar 

  17. Shah V, Toruner M, Haddad F et al. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology. 1999; 117:1222–8.

    Article  PubMed  CAS  Google Scholar 

  18. Shah V, Cao S, Hendrickson H, Yao J, Katusic ZS et al. Regulation of hepatic eNOS by caveolin and calmodulin after bile duct ligation in rats. Am J Physiol Gastrointest Liver Physiol. 2001;280:G 1209–16.

    Google Scholar 

  19. Yokomori H, Oda M, Ogi M, Sakai K, Ishii H. Enhanced expression of endothelial nitric oxide synthase and caveolin-l in human cirrhosis. Liver. 2002;22:150–8.

    Article  PubMed  CAS  Google Scholar 

  20. Yokomori H, Oda M, Yoshimura K et al. Elevated expression of caveolin-1 at protein and mRNA level in human cirrhotic liver: relation with nitric oxide. J Gastroenterol. 2003;38:854–60.

    Article  PubMed  CAS  Google Scholar 

  21. Garcia-Cardena G, Fan R, Shah V et al. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature. 1998;392:821–4.

    Article  PubMed  CAS  Google Scholar 

  22. Ou J, Fontana JT, Ou Z et al. Heat shock protein 90 and tyrosine kinase regulate eNOS NO* generation but not NO* bioactivity. Am J Physiol Heart Circ Physiol. 2004; 286:H561–9.

    Article  PubMed  CAS  Google Scholar 

  23. Shah V, Wiest R, Garcia-Cardena G, Cadelina G, Groszmann RJ, Sessa We. Hsp90 regulation of endothelial nitric oxide synthase contributes to vascular control in portal hypertension. Am J Physiol. 1999;277:G463–8.

    PubMed  CAS  Google Scholar 

  24. Bucci M, Roviezzo F, Cicala C, Sessa WC, Cirino G. Geldanamycin, an inhibitor of heat shock protein 90 (Hsp90) mediated signal transduction has anti-inflammatory effects and interacts with glucocorticoid receptor in vivo. Br J Pharmacol. 2000; 131:13–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Sessa, W.C. (2004). Endothelial-derived nitric oxide as a marker for healthy endothelium. In: Groszmann, R.J., Bosch, J. (eds) Portal Hypertension in the 21st Century. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1042-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1042-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3774-7

  • Online ISBN: 978-94-007-1042-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics