Skip to main content

Therapeutic tools in portal hypertension: drugs

  • Conference paper
Book cover Portal Hypertension in the 21st Century
  • 165 Accesses

Abstract

Portal hypertension often complicates the course of chronic liver disease and is a principal cause of mortality. Improvements in treating this complication made towards the end of the past century have been the consequence of several major achievements in our understanding of the pathophysiology of portal hypertension:

  1. 1.

    Increased intrahepatic vascular resistance (IHVR) to portal blood flow is the factor that initiates portal hypertension, but increased splanchnic blood flow due to splanchnic vasodilation contributes to maintain and aggravate this portal hypertension. Based on this finding, splanchnic vasoconstrictors are currently used to treat portal hypertension. As do beta-blockers, these reduce portal pressure, decreasing splanchnic blood flow.

  2. 2.

    In the cirrhotic liver, increased IHVR is the result of fixed elements (i.e. extracellular matrix, regenerative nodules, and vascular thrombosis) and elements that can be modulated (i.e. endothelial and stellate cells)1. Although the resistance provided by each of these modulatable and fixed elements is difficult to quantify precisely, vasodilators can reduce portal resistance up to 15% in the perfused cirrhotic rat liver2. This drop represents about 30% of the difference in resistance between the cirrhotic and normal liver. The dynamic component of the IHVR is a consequence of an enhanced vascular tone, secondary to an imbalance between vasoconstrictor and vasodilatory stimuli. Recent evidence indicates that a deficient intrahepatic release of nitric oxide (NO) plays a key role in the hepatic endothelial dysfunction of cirrhosis3, 4. In the normal liver the sinusoidal endothelial cells basally produce NO and increase its production in response to flow5, 6. In contrast, the cirrhotic liver fails to produce NO in response to incremental flow7. Endothelial(e)-NO synthase (NOS) and protein levels are unaltered, but endothelial-derived NO is impaired6. Since eNOS is extensively modified at the post-translational level, deficient NO release could be the consequence of an abnormality in one of these biochemical modifications occurring after injury to sinusoidal endothelial cells. For example, caveolin-l controls eNOS activity, and increased binding of caveolin to eNOS in cirrhosis is associated with reduced eNOS activity7. In addition, protein kinase B (Akt) phosphorylates eNOS and enhances its ability to generate NO. Down-regulation of Akt activity is responsible, in part, for the diminished NO production observed in cirrhotic livers, and constitutes another potential target for restoring hepatic endothelial function8. The hepatic vascular tone of the cirrhotic liver is also influenced by an increased production and exaggerated response to vasoconstrictors, such as endothelin-19, angiotensin II10, norepinephrine1114, thromboxane and leukotrienes15, 16. Knowing that an increased intrahepatic vascular tone contributes toward increasing portal pressure has provided a rational basis for the use of vasodilators to treat portal hypertension.

  3. 3.

    The third important concept is the correlation between the value or change in portal pressure, as measured by the hepatic venous pressure gradient (HVPG), and clinical events (i.e. variceal formation and bleeding). Pharmacological or spontaneous reduction in portal pressure to below 12 mmHg, or more than 20% from baseline, leads to a null or low (10%) risk of variceal bleeding, respectively1722. Pharmacological treatment seeks to achieve this reduction in portal pressure since it is known that this will lessen the risk of variceal bleeding and other complications of cirrhosis23. Non-response to vasoactive therapy is the most important independent risk factor for variceal bleeding23.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCuskey RS. Morphological mechanisms for regulating blood flow through hepatic sinusoids. Liver. 2000;20:3–7.

    Article  PubMed  CAS  Google Scholar 

  2. Bhathal PS, Grossman HJ. Reduction of the increased portal vascular resistance of the isolated perfused cirrhotic rat liver by vasodilators. J Hepatol. 1985;1:325–37.

    Article  PubMed  CAS  Google Scholar 

  3. Gupta TK, Toruner M, Chung MK, Groszmann RJ. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation: effects on portal hemodynamics and on liver and renal function. Hepatology. 1998;28:926–31.

    Article  PubMed  CAS  Google Scholar 

  4. Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology. 2002;35:478–91.

    Article  PubMed  CAS  Google Scholar 

  5. Shah V, Haddad F, Garcia-Cardena G et al. Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest. 1997;100:2923–30.

    Article  PubMed  CAS  Google Scholar 

  6. Rockey DC, Chung JJ. Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology. 1998;114:344–51.

    Article  PubMed  CAS  Google Scholar 

  7. Shah V, Toruner M, Haddad F et al. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology. 1999;117: 1222–8.

    Article  PubMed  CAS  Google Scholar 

  8. Morales-Ruiz M, Cejudo-Martin P, Fernandez-Varo G et al. Transduction of the liver with activated Akt normalizes portal pressure in cirrhotic rats. Gastroenterology. 2003;125:522–31.

    Article  PubMed  CAS  Google Scholar 

  9. Rockey DC, Weisiger RA. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology. 1996;24:233–40.

    Article  PubMed  CAS  Google Scholar 

  10. Bataller R, Gines P, Nicolas JM et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000;118:1149–56.

    Article  PubMed  CAS  Google Scholar 

  11. Albillos A, Bañares R, Barrios C et al. Oral administration of c10nidine in patients with alcoholic cirrhosis: hemodynamic and liver function effects. Gastroenterology. 1992;102:248–54.

    PubMed  CAS  Google Scholar 

  12. Albillos A, Lledo JL, Banares R et al. Hemodynamic effects of α-adrenergic blockade with prazosin in cirrhotic patients with portal hypertension. Hepatology. 1994;20:611–17.

    PubMed  CAS  Google Scholar 

  13. Albillos A, Lledo JL, Rossi I et al. Continuous prazosin administration in cirrhotic patients: effects on portal hemodynamics and on liver and renal function. Gastroenterology. 1995;109:1257–65.

    Article  PubMed  CAS  Google Scholar 

  14. Marteau P, Ballet F, Chazouilleres O et al. Effect of vasodilators on hepatic microcirculation in cirrhosis: a study in the isolated perfused rat liver. Hepatology. 1989;9:820–3.

    Article  PubMed  CAS  Google Scholar 

  15. Titos E, Claria J, Bataller R et al. Hepatocyte-derived cysteinyl leukotrienes modulate vascular tone in experimental cirrhosis. Gastroenterology. 2000;119:794–805.

    Article  PubMed  CAS  Google Scholar 

  16. Graupera M, Garcia-Pagan JC, Titos E et al. 5-Lipoxygenase inhibition reduces intrahepatic vascular resistance of cirrhotic rat livers: a possible role of cysteinyl-leukotrienes. Gastroenterology. 2002;122:387–93.

    Article  PubMed  CAS  Google Scholar 

  17. Groszmann RJ, Bosch J, Grace ND et al. Hemodynamic events in a prospective randomized trial of propranolol versus placebo in the prevention of a first variceal hemorrhage. Gastroenterology. 1990;99:1401–7.

    PubMed  CAS  Google Scholar 

  18. Feu F, Garcia-Pagan JC, Bosch J et al. Relation between portal pressure response to pharmacotherapy and risk of recurrent variceal haemorrhage in patients with cirrhosis. Lancet. 1995;346:1056–9.

    Article  PubMed  CAS  Google Scholar 

  19. Merkel C, Bolognesi M, Sacerdoti D et al. The hemodynamic response to medical treatment of portal hypertension as a predictor of clinical effectiveness in the primary prophylaxis of variceal bleeding in cirrhosis. Hepatology. 2000;32:930–4.

    Article  PubMed  CAS  Google Scholar 

  20. Villanueva C, Balanzo J, Novella MT et al. Nadolol plus isosorbide mononitrate compared with sclerotherapy for the prevention of variceal rebleeding. N Engl J Med. 1996;334:1624–9.

    Article  PubMed  CAS  Google Scholar 

  21. Villanueva C, Minana J, Ortiz J et al. Endoscopic ligation compared with combined treatment with nadolol and isosorbide mononitrate to prevent recurrent variceal bleeding. N Engl J Med. 2001;345:647–55.

    Article  PubMed  CAS  Google Scholar 

  22. Bosch J, Arroyo V, Betriu A et al. Hepatic hemodynamics and the renin-angiotensin-aldosterone system in cirrhosis. Gastroenterology. 1980;78:92–9.

    PubMed  CAS  Google Scholar 

  23. Abraldes JG, Tarantino I, Turnes J, Garcia-Pagan JC, Rodes J, Bosch I. Hemodynamic response to pharmacological treatment of portal hypertension and long-term prognosis of cirrhosis. Hepatology. 2003;37:902–8.

    Article  PubMed  Google Scholar 

  24. Garcia-Pagan JC, Feu F, Bosch I, Rodés J. Propranolol compared with propranolol plus isosorbide-5-mononitrate for portal hypertension in cirrhosis. A randomized controlled study. Ann Intern Med. 1991;114:869–73.

    PubMed  CAS  Google Scholar 

  25. Albillos A, Garcia-Pagan JC, Iborra J et al. Propranolol plus prazosin compared with propranolol plus isosorbide-5-mononitrate in the treatment of portal hypertension. Gastroenterology. 1998;115:116–23.

    Article  PubMed  CAS  Google Scholar 

  26. Kroeger RJ, Groszmann RJ. Increased portal venous resistance hinders portal pressure reduction during the administration of beta-adrenergic blocking agents in a portal hypertensive model. Hepatology. 1985;5:97–101.

    Article  PubMed  CAS  Google Scholar 

  27. Escorsell A, Ferayorni L, Bosch J et al. The portal pressure response to beta-blockade is greater in cirrhotic patients without varices than in those with varices. Gastroenterology. 1997;112:2012–16.

    Article  PubMed  CAS  Google Scholar 

  28. Albillos A, Pérez M, Cacho G, Calleja JL, Escartín P. Accuracy of portal and forearm blood flow measurements in the assessment of portal pressure response to propranolol. I Hepatol. 1997;27:496–504.

    Article  CAS  Google Scholar 

  29. Garcia-Tsao G, Grace ND, Groszmann RJ et al. Short-term effects of propranolol on portal venous pressure. Hepatology. 1986;6:101–6.

    Article  PubMed  CAS  Google Scholar 

  30. Gengo FM, Huntoon L, McHugh WB. Lipid-soluble and water-soluble beta-blockers. Comparison of the central nervous system depressant effect. Arch Intern Med. 1987;147: 39–43.

    Article  PubMed  CAS  Google Scholar 

  31. Groszmann RJ, Garcia-Tsao G, Bosch J et al. Multicenter randomized placebo-controlled trial of non-selective beta-blockers in the prevention of the complications of portal hypertension: final results and identification of a predictive factor. Hepatology. 2003;38:206A.

    Article  Google Scholar 

  32. Groszmann RI, Kravetz D, Bosch J et al. Nitroglycerin improves the hemodynamic response to vasopressin in portal hypertension. Hepatology. 1982;2:757–62.

    Article  PubMed  CAS  Google Scholar 

  33. Groszmann R. Beta-adrenergic blockers and nitro vasodilators for the treatment of portal hypertension: the good, the bad, the ugly. Gastroenterology. 1997;113:1794–7.

    Article  PubMed  CAS  Google Scholar 

  34. Harrison D, Bates J. The nitro vasodilators: new ideas about old drugs. Circulation. 1993;87:1461–7.

    Article  PubMed  CAS  Google Scholar 

  35. Garcia-Tsao G, Groszmann RJ. Portal hemodynamics during nitroglycerin administration in cirrhotic patients. Hepatology. 1987;7:805–9.

    Article  PubMed  CAS  Google Scholar 

  36. Navasa M, Chesta J, Bosch J, Rodes J. Reduction of portal pressure by isosorbide-5-mononitrate in patients with cirrhosis. Effects on splanchnic and systemic hemodynamics and liver function. Gastroenterology. 1989;96:1110–18.

    PubMed  CAS  Google Scholar 

  37. Bellis L, Berzigotti A, Abraldes JG et al. Low doses of isosorbide mononitrate attenuate the postprandial increase in portal pressure in patients with cirrhosis. Hepatology. 2003;37:378–84.

    Article  PubMed  CAS  Google Scholar 

  38. Angelico M, Carli L, Piat C, Gentile S, Capocaccia L. Effects of isosorbide-5-mononitrate compared with propranolol on first bleeding and long-term survival in cirrhosis. Gastroenterology. 1997;113:1632–9.

    Article  PubMed  CAS  Google Scholar 

  39. Garcia-Pagan JC, Villanueva C, Vila MC et al. Isosorbide mononitratc in the prevention of first variceal bleed in patients who cannot receive beta-blockers. Gastroenterology. 2001;121:908–14.

    PubMed  CAS  Google Scholar 

  40. Dudenhoefer AA, Loureiro-Silva MR, Cadelina GW, Gupta T, Groszmann RJ. Bioactivation of nitroglycerin and vasomotor response to nitric oxide are impaired in cirrhotic rat livers. Hepatology. 2002;36:381–5.

    Article  PubMed  CAS  Google Scholar 

  41. Gournay J, Masliah C, Martin T, Perrin D, Galmiche JP. Isosorbide mononitrate and propranolol compared with propranolol alone for the prevention of variceal rebleeding. Hepatology. 2000;31:1239–45.

    Article  PubMed  CAS  Google Scholar 

  42. Garcia-Pagan JC, Morillas R, Banares R et al. Spanish Variceal Bleeding Study Group. Propranolol plus placebo versus propranolol plus isosorbide-5-mononitrate in the prevention of a first variceal bleed: a double-blind RCT. Hepatology. 2003;37:1260–6.

    Article  PubMed  CAS  Google Scholar 

  43. Fiorucci S, Antonelli E, Morelli O et al. NCX-l000, a NO-releasing derivative ofursodeoxycholic acid, selectively delivers NO to the liver and protects against development of portal hypertension. Proc Natl Acad Sci USA. 2001;98:8897–902.

    Article  PubMed  CAS  Google Scholar 

  44. Fiorucci S, Antonelli E, Brancaleone V et al. NCX-l000, a nitric oxide-releasing derivative of ursodeoxycholic acid, ameliorates portal hypertension and lowers norepinephrine-induced intrahepatic resistance in the isolated and perfused rat liver. J Hepatol. 2003;39:932–9.

    Article  PubMed  CAS  Google Scholar 

  45. Loureiro-Silva MR, Cadelina GW, Iwakiri Y, Groszmann RJ. A liver-specific nitric oxide donor improves the intra-hepatic vascular response to both portal blood flow increase and methoxamine in cirrhotic rats. J Hepatol. 2003;39:940–6.

    Article  PubMed  CAS  Google Scholar 

  46. Yu Q, Shao R, Qian HS, George SE, Rockey DC. Gene transfer of the neuronal NO synthase isoform to cirrhotic rat liver ameliorates portal hypertension. J Clin Invest. 2000;105:741–8.

    Article  PubMed  CAS  Google Scholar 

  47. Van de Casteele M, Omasta A, Janssens S et al. In vivo gene transfer of endothelial nitric oxide synthase decreases portal pressure in anaesthetised carbon tetrachloride cirrhotic rats. Gut. 2002;51:440–5.

    Article  PubMed  Google Scholar 

  48. Van de CM, Van Pelt JF, Nevens F, Fevery J, Reichen J. Low NO bioavailability in CC14 cirrhotic rat livers might result from low NO synthesis combined with decreased superoxide dismutase activity allowing superoxide-mediated NO breakdown: a comparison of two portal hypertensive rat models with healthy controls. Comp Hepatol. 2003;2:2.

    Article  Google Scholar 

  49. Zafra C, Abraldes J, Turnes J et al. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology. 2004;126:749–55.

    Article  PubMed  CAS  Google Scholar 

  50. Stanley AJ, Therapondos G, Helmy A, Hayes PC. Acute and chronic haemodynamic and renal effects of carvedilol in patients with cirrhosis. J Hepatol. 1999;30:479–84.

    Article  PubMed  CAS  Google Scholar 

  51. Banares R, Moitinho E, Piqueras B et al. Carvedilol, a new nonselective beta-blocker with intrinsic anti-alpha-1 adrenergic activity, has a greater portal hypotensive effect than propranolol in patients with cirrhosis. Hepatology. 1999;30:79–83.

    Article  PubMed  CAS  Google Scholar 

  52. Tripathi D, Therapondos G, Lui HF, Stanley AJ, Hayes PC. Haemodynamic effects of acute and chronic administration of low-dose carvedilol, a vasodilating beta-blocker, in patients with cirrhosis and portal hypertension. Aliment Pharmacol Ther. 2002;16:373–80.

    Article  PubMed  CAS  Google Scholar 

  53. Banares R, Moitinho E, Piqueras B et al. Randomized comparison of long-term carvedilol and propranolol administration in the treatment of portal hypertension in cirrhosis. Hepatology. 2002;36:1367–73.

    PubMed  CAS  Google Scholar 

  54. Bosch J, Arroyo V, Betriu A et al. Hepatic hemodynamics and the renin-angiotensin-aldosterone system in cirrhosis. Gastroenterology. 1980;78:92–9.

    PubMed  CAS  Google Scholar 

  55. Ballet F, Chretien Y, Rey C et al. Differential response of normal and cirrhotic liver to vasoactive agents. A study in the isolated perfused rat liver. J Pharmacol Exp Ther. 1988;244:233–5.

    Google Scholar 

  56. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor β in human disease. N Engl J Med. 2000;342:1350–8.

    Article  PubMed  CAS  Google Scholar 

  57. Goodfriend TL, Elliott ME, Catt KJ. Angiotensin receptors and their antagonists. N Engl J Med. 1996;25:1649–54.

    Google Scholar 

  58. Schneider AW, Friedrich J, Klein CP. Effect of losartan, an angiotensin II receptor antagonist, on portal pressure in cirrhosis. Hepatology. 1999;29:334–9.

    Article  PubMed  CAS  Google Scholar 

  59. Gonzalez-Abraldes J, Albillos A, Banares R et al. Randomized comparison of long-term losartan versus propranolol in lowering portal pressure in cirrhosis. Gastroenterology. 2001;121:382–8.

    Article  PubMed  CAS  Google Scholar 

  60. Schepke M, Werner E, Biecker E et al. Hemodynamic effects of the angiotensin II receptor antagonist irbesartan in patients with cirrhosis and portal hypertension. Gastroenterology. 2001;121:389–95.

    Article  PubMed  CAS  Google Scholar 

  61. Venon WD, Baronio M, Leone N et al. Effects of long-term irbesartan in reducing portal pressure in cirrhotic patients: comparison with propranolol in a randomised controlled study. J Hepatol. 2003;38:455–60.

    Article  PubMed  CAS  Google Scholar 

  62. Debernardi-Venon W, Barletti C, Alessandria C et al. Efficacy of irbesartan, a receptor selective antagonist of angiotensin II, in reducing portal hypertension. Dig Dis Sci. 2002;47:401–4.

    Article  PubMed  CAS  Google Scholar 

  63. De BK, Bandyopadhyay K, Das TK et al. Portal pressure response to losartan compared with propranolol in patients with cirrhosis. Am J Gastroenterol. 2003;98:1371–6.

    Article  PubMed  CAS  Google Scholar 

  64. Rockey DC, Fouassier L, Chung JJ et al. Cellular localization of endothelin-1 and increased production in liver injury in the rat: potential for autocrine and paracrine effects on stellate cells. Hepatology. 1998;27:472–80.

    Article  PubMed  CAS  Google Scholar 

  65. Leivas A, Jimenez W, Bruix J et al. Gene expression of endothelin-1 and ET(A) and ET(B) receptors in human cirrhosis: relationship with hepatic hemodynamics. J Vasc Res. 1998;35:186–93.

    Article  PubMed  CAS  Google Scholar 

  66. Reichen J, Gerbes AL, Steiner MJ, Sagesser H, Clozel M. The effect of endothelin and its antagonist bosentan on hemodynamics and microvascular exchange in cirrhotic rat liver. J Hepatol. 1998;28: 1020–30.

    Article  PubMed  CAS  Google Scholar 

  67. Sogni P, Moreau R, Gomola A et al. Beneficial hemodynamic effects of bosentan, a mixed ET(A) and ET(B) receptor antagonist, in portal hypertensive rats. Hepatology. 1998;28:655–9.

    Article  PubMed  CAS  Google Scholar 

  68. Poo JL, Jimenez W, Munoz R el al. Chronic blockade of endothelin receptors in cirrhotic rats: hepatic and hemodynamic effects. Gastroenterology. 1999;116:161–7.

    Article  PubMed  CAS  Google Scholar 

  69. Cho JJ, Hocher B, Herbst H et al. An oral endothelin-A receptor antagonist blocks collagen synthesis and deposition in advanced rat liver fibrosis. Gastroenterology. 2000;118:1169–78.

    Article  PubMed  CAS  Google Scholar 

  70. Kojima H, Sakurai S, Kuriyama S et al. Endothelin-1 plays a major role in portal hypertension of biliary cirrhotic rats through endothelin receptor subtype B together with subtype A in vivo. J Hepatol. 2001;34:805–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Albillos, A. (2004). Therapeutic tools in portal hypertension: drugs. In: Groszmann, R.J., Bosch, J. (eds) Portal Hypertension in the 21st Century. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1042-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1042-9_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3774-7

  • Online ISBN: 978-94-007-1042-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics