Skip to main content

Advances in Molecular Cytogenetics: Potential for Crop Improvement

  • Chapter
Book cover Plant Breeding

Abstract

Advances made over the last two decades in techniques and approaches used in molecular cytogenetics research and the results obtained so far have been briefly reviewed. These include the use of chromosome banding, fluorescence in situ hybridisation (FISH) and multicolour FISH (McFISH), genomic in situ hybridisation (GISH), flow cytometry, pulse field gel electrophoresis (PFGE), microdissection and microcloning, among others. These tools have been used both for identification of individual chromosomes and for physical localization of DNA sequences on individual chromosomes. Construction of genetic and physical maps of crop plants involving molecular markers as well as genes for agronomic traits has been discussed briefly. The use of these maps in comparative genomics, both at the macro- and micro-colinearity levels and for map based cloning has been briefly reviewed. The development and use of bacterial artificial chromosomes (BACs), yeast artificial chromosomes (YACs) and the future prospects of the development of plant artificial chromosomes (PACs) have also been discussed. The progress made in discovery of new genes through reverse genetics and functional genomics approach has also been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albani D., Cote M. J., Armstrong K. C., Chen Q., Segal A. and Robert L. S. 1993. PCR amplification of microdissected wheat chromosome arms in a simple tube reaction. Plant J., 4: 899–903.

    Article  PubMed  CAS  Google Scholar 

  • Arumuganathan K. and Earle E. D. 1991. Nuclear DNA content of some important plant species. Plant Mol Biol. Rep., 9: 208–218.

    Article  CAS  Google Scholar 

  • Arumuganathan K., Champoux J., Li L. and Gill K. S. 2000. Flow-cytometric sorting of individual chromosomes and chromosome arms of corn and wheat. In: Proc. 6th Intern. Congr. Plant Mol Biol., Abstract No. S29-2, Quebec (June 18-24, 2000).

    Google Scholar 

  • Badaeva E. D., Badaev N. S., Gill B. S. and Filatenko A. A. 1994. Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Pl. Syst Evol., 192: 117–145.

    Article  Google Scholar 

  • Bennetzen J. L. 2000. Comparative sequence analysis of plant nuclear genomes: Microcolinearity and its exceptions. The Plant Cell 12: 1021–1029.

    PubMed  CAS  Google Scholar 

  • Burke D. T., Carle G. F. and Olson M. V. 1987. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science, 236: 806–812.

    Article  PubMed  CAS  Google Scholar 

  • Caspersson T., Zech L., Modest E. J., Foley G. E., Wagh U. and Simonsson E. 1969. Chemical differentiation with fluorescent alkylating agents in Vicia faba metaphase chromosomes. Exp. Cell Res., 58: 128–140.

    Article  PubMed  CAS  Google Scholar 

  • Chen Q. and Armstrong K. 1994. Genomic in situ hybridization in Avena sativa. Genome, 37: 607–612.

    Article  PubMed  CAS  Google Scholar 

  • Civardi L., Xia Y., Edwards K. J., Schnable P. S. and Nikolau BJ. 1994. The relationship between genetic and physical distances in the clones al-sh2 interval of the Zea mays. L. genome. Proc. Natl. Acad. Sci., USA, 91: 8268–8272.

    Article  PubMed  CAS  Google Scholar 

  • Conia J., Bergounioux C., Perennes C., Muller P., Brown S. and Gadal P. 1987. Flow cytometric analysis and sorting of plant chromosomes from Petunia hybrida protoplasts. Cytometry, 8: 500–508.

    Article  PubMed  CAS  Google Scholar 

  • De Laat A. M. M. and Blass J. 1984. Flow-cytometric characterization and sorting of plant chromosomes. Theor. Appl. Genet., 67: 463–467.

    Article  Google Scholar 

  • Devos K. M., Atkinson M. D., Chinoy C. N., Harcourt R. L., Koebner R. M. D., Liu C. J., Masojc P., Xie D. X. and Gale M. D. 1993. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet., 85: 673–680.

    Article  CAS  Google Scholar 

  • Devos K. M. and Gale M. D. 2000. Genome relationships: The grass model in current research. The Plant Cell, 12: 637–646.

    PubMed  CAS  Google Scholar 

  • Doyle J. F. and Gaut B. F. 2000. Plant Molecular Evolution. Kluwer Academic Publishers. Dordrecht, The Netherlands.

    Book  Google Scholar 

  • Draye X., Lin Y. R., Qian X. Y., Bowers J. E., Burow G. B., Morrell P. L., Peterson D. G., Presting G. G., Ren S. X., Wing R. A. and Paterson A. H. 2001. Towards integration of comparative genetic, physical, diversity and cytomolecular maps for grasses and grains, using the sorghum genome as a foundation. Plant Physiol, 125: 1325–1341.

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J., Ramakrishna W., SanMiguel P. J., Busso C. S., Yan L., Shiloff B. A. and Bennetzen J. L. 2001. Comparative sequence analysis fo collinear barley and rice bacterial artificial chromosomes. Plant Physiol, 125: 1342–1353.

    Article  PubMed  CAS  Google Scholar 

  • Feng Q. et al 2002. Sequence and analysis of rice chromosome 4. Nature, 420: 312–316.

    Article  CAS  Google Scholar 

  • Feuillet C. and Keller B. 1999. High gene density is conserved at syntenic loci of small and large grass genomes. Proc. Natl. Acad. Sci., USA, 96: 8265–8270.

    CAS  Google Scholar 

  • Florijn R. J., Bonden L. A. J., Vrolijk H., Wiegant J., Vaandrager J. W., Bass F., Den Dunnen J. T., Tanke HJ., Van Ommen G. J. B. and Raap A. K. 1995. High resolution DNA mapping and colour bar-coding of large genes. Hum. Mol. Genet., 4: 831–836.

    Article  PubMed  CAS  Google Scholar 

  • Fidlerova H., Senger G., Kost M., Sanseau P. and Sheer D. 1994. Two simple procedures for releasing chromatin from routinely fixed cells for fluorescence in situ hybridization. Cytogenet. Cell Genet., 65: 203–205.

    Article  CAS  Google Scholar 

  • Fransz P. F., Stam M., Montijn B. M., Hoopen R. T., Wiegant J., Kooter J. M., Oud O. and Nanninga N. 1996. Detection of single-copy genes and chromosome rearrangements in Petunia hybrida by fluorescence in situ hybridisation. Plant J., 9: 767–774.

    Article  CAS  Google Scholar 

  • Friebe B. and Gill B. S. 1994. C-band polymorphism and structural rearrangements detected in common wheat (Triticum aestivum). Euphytica, 78: 1–5.

    Google Scholar 

  • Friebe B., Endo T. R. and Gill B. S. 1995. Chromosome banding methods. In: Plant Chromosomes: Laboratory methods, (ed. ) K. Fukui. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Fukui K. 1986. Standardization of karyotyping plant chromosomes by a newly developed chromosome image analyzing system (CHIAS). Theor. Appl. Genet., 72: 27–32.

    Article  Google Scholar 

  • Fukui K., Minezawa M., Kamisugi Y., Yanagisawa T., Fujishita M. and Sakai F. 1991. Microdissection of barley chromosome by the cell workstation. Barley Genet., 6: 272–276.

    Google Scholar 

  • Fukui K. and Nakayama S. 2000. Imaging: An indispensable tool for modern chromosome research. In: Genetics and Biotechnology in Crop Improvement, (eds. ) P. K. Gupta et al. pp. 38–51. Rastogi Publications, Meerut, India.

    Google Scholar 

  • Gall J. G. and Pardue M. L. 1969. Formation and detection of RNA — DNA hybrid molecules in cytological preparations. Proc. Natl. Acad. Sci., USA, 63: 378–383.

    Article  PubMed  CAS  Google Scholar 

  • Ganal M. W., Young N. D. and Tanksley S. D. 1989. Pulsed field gel electrophoresis and physical mapping of large DNA fragments in the Tm-2a region of chromosome 9 in tomato. Mol. Gen. Genet., 215: 395–400.

    Article  CAS  Google Scholar 

  • Gerdes M. G., Carter M. C., Moen J. P. T. and Lawrence J. B. 1994. Dynamic changes in the higher-level chromatin organization of specific sequences revealed by in situ hybridization to nuclear halos. J. Cell Biol., 126: 289–303.

    Article  PubMed  CAS  Google Scholar 

  • Gill B. S. and Kimber G. 1974a. The Giemsa C-banded karyotype of rye. Proc. Natl. Acad. Sci., USA, 71: 1247–1249.

    Article  PubMed  CAS  Google Scholar 

  • Gill B. S. and Kimber G. 1974b. Giemsa C-banding and the evolution of wheat. Proc. Natl. Acad. Sci., USA, 71: 4086–4090.

    Article  PubMed  CAS  Google Scholar 

  • Gill B. S., Friebe B. and Endo T. R. 1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome, 34: 830–839.

    Article  Google Scholar 

  • Gupta P. K. 1995. Recent trends in cytogenetics. In: Perspectives in Cytology and Genetics, (eds. ) G. K. Manna and S. C. Roy, 8: 633–642.

    Google Scholar 

  • Gupta P. K. 1998. Plant cytogenetics and plant breeding in the twenty first century. In: Perspectives in Cytology and Genetics, (eds. ) G. K. Manna and S. C. Roy. 9: 65–78.

    Google Scholar 

  • Gupta P. K. 2000. Chromosome and genome research in plants: Some recent developments. The Nucleus, 43: 94–113.

    Google Scholar 

  • Gupta P. K., Roy J. K. and Prasad M. 2001. Single Nucleotide Polymorphisms (SNPs) in Plants: A new paradigm in molecular marker technology and DNA polymorphism detection. Curr. Sci., 80: 524–535.

    CAS  Google Scholar 

  • Haaf T. and Ward D. C. 1994. High resolution ordering of YAC contigs using extended chromatin and chromosomes. Hum. Mol. Genet., 3: 629–633.

    Article  PubMed  CAS  Google Scholar 

  • Hanson R. E., Zwick M. S., Choi S., Islam-Faridi M. N., McKnight T. D., Wing R. A., Price H. J. and Stelly D. M. 1995. Fluorescent in situ hybridization of a bacterial artificial chromosome. Genome, 38: 646–651.

    Article  PubMed  CAS  Google Scholar 

  • Heng H. H. Q., Squire J. and Sui L. C. 1992. High resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl. Acad. Sci., USA, 89: 9509–9513.

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison J. S. 2000. Comparative genome organization in plants: From sequence and markers to chromatin and chromosomes. The Plant Cell, 12: 617–635.

    PubMed  CAS  Google Scholar 

  • Houseal T. W., Dackowski W. R., Landes G. M. and Klinger K. W. 1994. High resoltuion mapping of overlapping cosmids by fluorescence in situ hybridization. Cytometry, 15: 193–198.

    Article  PubMed  CAS  Google Scholar 

  • Jellen E. N., Gill B. S. and Cox T. S. 1994. Genomic in situ hybridization differentiates between A/D and C genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena). Genome, 37: 613–618.

    Article  PubMed  CAS  Google Scholar 

  • Jiang J., Gill B. S., Wang G. L., Ronald P. C. and Ward D. C. 1995. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc. Natl. Acad. Sci., USA, 92: 4487–4491.

    Article  PubMed  CAS  Google Scholar 

  • Jung C., Kleine M., Fischer F. and Herrmann R. G. 1990. Analysis of DNA from a Beta procumbens chromosome fragment in sugar beet carrying a gene for nematode resistance. Theor. Appl. Genet., 79: 663–672.

    Article  CAS  Google Scholar 

  • Jung C., Claussen U., Horsthemke B., Fischer F. and Herrmann R. G. 1992. A DNA library from an individual Beta patellaris chromosome conferring nematode resistance obtained by microdissection of meiotic metaphase chromosome. Plant Mol. Biol., 20: 503–511.

    Article  PubMed  CAS  Google Scholar 

  • Kao F. T. 1996. Chromosome microdissection and microcloning: Application to genome analysis. In: Methods of genome analysis in plants, (ed. ) P. P. Jauhar. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Kenton A., Parokonny A. S., Gleba Y. Y. and Bennett M. D. 1993. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol. Gen. Genet., 240: 159–169.

    Article  PubMed  CAS  Google Scholar 

  • Kuenzel G. and Korzun L. 1996. Physical mapping of cereal chromosome with special emphasis on barley. In: 5th Intern. Oat Conf. and 7th Intern. Barley Genetics Symp., (eds). Scoles G., Rossnagel B., Pp. 197–206. University Extension Press, University of Saskatchewan, Canada.

    Google Scholar 

  • Kuenzel G., Korzun L. and Meister A. 2000. Cytological integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics, 154: 397–412.

    Google Scholar 

  • Ku H. M., Vision T., Liu J. and Tanksley S. D. 2000. Comparing sequenced segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. PNAS, USA, 97: 9121–9126.

    Article  CAS  Google Scholar 

  • Kynast R. G., Odl and W. E., Okagaki R. J., Riera-Lizarazu O., Maquieira S. M., Russel C. D., Rines H. W. and Phillips R. L. 2000. Complete set of maize individual-chromosome additions in oat. CSSA Abstracts, Division C-7, page 188.

    Google Scholar 

  • Kynast R. G., Riera-Lizarau O., Vales M. I., Okagaki R. J., Maquieira S. M., Chen G., Ananiev E. V., Odl and W. E., Russell C. D. and Stec A. O. 2001. A complete set of maize individual chromosome additions to the oat genome. Plant Physiol., 125: 1216–1227.

    Article  PubMed  CAS  Google Scholar 

  • Langer-Safer P. R., Levine M. and Ward D. C 1982. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc. Natl. Acad. Sci., USA, 79: 4381–4385.

    Article  PubMed  CAS  Google Scholar 

  • Le H. T., Armstrong K. C. and Miki B. 1989. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol. Biol. Rep., 7: 150–158.

    Article  Google Scholar 

  • Lee J. H., Arumuganathan K., Kaeppler S. M., Kaeppler H. F. and Papa C. M. 1996. Cell synchronization and isolation of metaphase chromosomes from maize (Zea mays L. ) root tips for flow cytometric analysis and sorting. Genome, 39: 697–703.

    Article  PubMed  CAS  Google Scholar 

  • Lee J. H., Yen Y., Arugumunathan K. and Baenziger P. S. 1997. DNA content of wheat chromosomes at interphase estimated by flow cytometry. Theor. Appl. Genet.

    Google Scholar 

  • Leister D. M., Kurth J., Laurie D. A., Yano M., Sasaki T., Devos K. M., Graner A. and Schulze-Lefert P. 1998. Rapid reorganization of resistance gene homologues in cereal genomes. Proc. Natl. Acad. Sci., USA, 95: 370–375.

    Article  PubMed  CAS  Google Scholar 

  • Li W. and Gill B. S. 2002. The colinearity of Sh2/A1 orthologous region in rice, sorghum and maize is interrupted and accompanied by genome expansion in the triticeae. Genetics, 160: 1153–1162.

    PubMed  CAS  Google Scholar 

  • Liu B., Segal G., Vega J. M., Feldman M. and Abbo S. 1997. Isolation and characterization of chromosome-specific DNA sequences from a chromosome arm genomic library of common wheat. Plant J., 11: 959–965.

    Article  CAS  Google Scholar 

  • Llaca V. and Messing J. 1998. Amplicons of maize zein genes are conserved within genic but expanded and constricted in intergenic regions. Plant J., 15: 211–220.

    Article  PubMed  CAS  Google Scholar 

  • Lucretti S., Dolezel J., Shubert I. and Fuchs J. 1993. Flow karyotyping and sorting of Viciafaba chromosomes. Theor. Appl. Genet., 85: 665–672.

    Article  Google Scholar 

  • Mathews S. and Donoghue M. J. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science, 286: 947–950.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre C. L., Pereira S., Moran L. B. and Appels R. 1990. New Secale cereale (rye) DNA derivatives for the detection of rye segments in wheat. Genome, 33: 635–640.

    Article  PubMed  CAS  Google Scholar 

  • McNeil D., Lagudah E. S., Hohmann U. and Appels R. 1994. Amplification of DNA sequences in wheat and its relatives: the Dgas44 and R350 families of repetitive sequences. Genome, 37: 320–327.

    Article  PubMed  CAS  Google Scholar 

  • Mukai Y. 1996. Multicolor fluorescence in situ hybridization: A new tool for genome analysis. In: Methods of genome analysis in plants, (ed. ) P. P. Jauhar. CRC Press, Boca Raton, Florida, USA, pp 181–192.

    Google Scholar 

  • Mukai Y. and Yamamoto M. 1998. Application of multicolor fluorescence in situ hybridization to plant genome analysis. In: Genetics and Biotechnology in Crop Improvement, (eds. ) P. K. Gupta, S. P. Singh, H. S. Balyan, P. C. Sharma and B. Ramesh. Rastogi Publications, Meerut, India.

    Google Scholar 

  • Mukai Y., Friebe B., Hatchett M., Yamamoto M. and Gill B. S. 1993. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma, 102: 88–95.

    Article  Google Scholar 

  • Nonomura K. I. and Kurata N. 2000. Construction of rice artificial chromosome. In: Proc. 6th Intern. Congr. Plant Mol. Biol., Abstract No. S 03-60, Quebec (June 18-24, 2000).

    Google Scholar 

  • Okagaki R. J., Kynast R. G., Odl and W. E., Russel C. D., Livingston S. M., Rines H. W. and Phillips R. L. 2000. Mapping maize chromosomes using oat-maize radiation hybrid lines. CSSA Abstracts, Division C-7, page 188.

    Google Scholar 

  • Okagaki R. J., Kynast R. G., Livingston S. M., Russell C. D., Rines H. W. and Phillips R. L. 2001. Mapping maize sequences to chromosomes using oat-maize radiation hybrid lines. CSSA Abstracts, Division C-7, 188.

    Google Scholar 

  • Ozkan H., Levy A. A. and Feldman M. 2001. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell, 13: 1735–1747.

    PubMed  CAS  Google Scholar 

  • Panstruga R., Busches R., Piffanelli P. and Schulze-Lefert P. 1998. A contiguous 60 kb genomic stretch from barley reveal momecular evidence for gene islands in monocot genome. Nucleic Acids Res., 26: 1056–1062.

    Article  PubMed  CAS  Google Scholar 

  • Parra I. and Windle B. 1993. High resolution visual mapping of stretched DNA by fluorescent hybridization. Nature Gen., 5: 17–21.

    Article  CAS  Google Scholar 

  • Paterson A. H., Lin Y. R., Li Z., Schertz K. F., Doebley J. F., Pinson S. R. M., Liu S. C., Stansel J. W. and Irvine J. E. 1995. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science, 269: 1714–1718.

    Article  PubMed  CAS  Google Scholar 

  • Paterson A. H., Bowers J. E., Burow M. D., Draye X., Elsik C. G., Jiang C. X., Katsar C. S., Lan T. H., Lin Y. R., Ming R. and Wright R. J. 2000. Comparative genomics of plant chromosomes. Plant Cell, 12: 1523–1539.

    PubMed  CAS  Google Scholar 

  • Pedersen C. and Langridge P. 1997. Identification of the entire chromosome complement of bread wheat by two-color FISH. Genome, 40: 589–593.

    Article  PubMed  CAS  Google Scholar 

  • Peng J. R., Richards D. E., Hartley N. M., Murphy G. P., Devos K. M., Flintham J. E., Beales J., Fish L. J., Worl and A. L., Pelica F., Sudhakar D., Christou P., Snape J. W., Gale M. D. and Harberd N. P. 1999. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 400: 256–261.

    Article  PubMed  CAS  Google Scholar 

  • Qui Y. L., Lee J., Bernasconl-Quadronl F., Solttis D. E., Solttis P. S., Zanis M., Zimmer E. A., Chen Z., Savolainen V. and Chase M. W. 1999. The earliest angiospersm: Evidence from mitochondrial, plastid and nuclear genomes. Nature, 25: 404–406.

    Google Scholar 

  • Rahman S., Abrahams S., Abbott D., Mukai Y., Samuel M., Morell M. and Appels R. 1997. A complex arrangement of genes at a starch branching enzyme I locus in the D-genome donor of wheat. Genome, 40: 465–474.

    Article  PubMed  CAS  Google Scholar 

  • Rayburn A. L. and Gill B. S. 1985. Use of biotin-labelled probes to map specific DNA sequences on wheat chromosomes. J. Hered., 76: 78–81.

    Google Scholar 

  • Rayburn A. L. and Gill B. S. 1986. Molecular identification of the D-genome chromosomes of wheat. J. Hered., 77: 253–255.

    CAS  Google Scholar 

  • Ried T., Baldini A., R and T. C. and Ward D. C. 1992. Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc. Natl. Acad. Sci., USA, 89: 1388–1392.

    CAS  Google Scholar 

  • Riera-Lizarazu O., Vales M. I., Ananiev E. V., Rines H. W. and Phillips R. L. 2000. Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics, 156: 327–339.

    PubMed  CAS  Google Scholar 

  • Sandery M. J., Forster J., Macadam S. R., Blunden R., Jones R. N. and Brown S. D. M. 1991. Isolation of a specific common to A-and B-chromosomes of rye (Secale cereale) by microcloning. Plant Mol. Biol. Rep., 9: 21–30.

    Article  CAS  Google Scholar 

  • Sasaki T. et al. 2002. The genome sequence and structure of rice chromosome 1. Nature, 420: 312–316.

    Article  PubMed  CAS  Google Scholar 

  • Schondelmaier J., Martin R., Jahoor A., Houben A., Graner A., Koop H. U., Herrmann R. G. and Jung C. 1993. Microdissection and microcloning of the barley (Hordeum vulgare L. ) Chromosome 1HS. Theor. Appl. Genet., 86: 629–636.

    Article  CAS  Google Scholar 

  • Schrock E., Du Manoir S., Veldman T., Schoell B., Wienberg J., Ferguson-Smith M. M. A., Ning Y., Ledbetter D. H., Bar-Am I., Soenksen D., Garini Y. and Ried T. 1996. Multicolor spectral karyotyping of human chromosomes. Science, 273: 494–497.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz D. C. and Cantor C. R. 1984. Separation of yeast chromosome — sized DNA by pulse field gradient gel electrophoresis. Cell, 37: 67–75.

    Article  PubMed  CAS  Google Scholar 

  • Schwarzacher T., Leitch A. R., Bennett M. D. and Heslop-Harrison J. S. 1989. In situ localization of parental genomes in a wide hybrid. Ann. Bot., 64: 315–324.

    Google Scholar 

  • Shaked H., Kaushkush K., Ozkan H., Feldman M. and Levy A. A. 2001. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridisation and allopolyploidy in wheat. Plant Cell, 13: 1749–1759.

    PubMed  CAS  Google Scholar 

  • Shen D. L., Wang Z. F. and Wu M. 1987. Gene mapping on maize pachytene chromosomes by in situ hybridization. Chromosoma, 95: 311–314.

    Article  Google Scholar 

  • Shirasu K., Schulman A. H., Lahaye T. and Schulze-Lefert P. 2000. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res., 10: 908–915.

    Article  PubMed  CAS  Google Scholar 

  • Solttis P. S., Solttis D. E. and Chase M. W. 1999. Angiosperms phylogeny inferred from multiple genes as a tool for comparative biology. Nature, 25: 402–404.

    Article  Google Scholar 

  • Sorokin A., Marthe F., Houben A., Pich U. and Graner A. 1994. Polymerase chain reaction mediated localization of RFLP clones to microisolated translocation chromosomes of barley. Genome, 37: 550–555.

    Article  PubMed  CAS  Google Scholar 

  • Stein N., Ponelies N., Musket T., McMullen M. and Weber G. 1998. Chromosome microdissection and region specific libraries from pachytene chromosomes of maize (Zea mays L. ). Plant J., 13: 281–289.

    Article  CAS  Google Scholar 

  • Stein N., Feuillet C., Wicker T., Schlagenhauf E. and Keller B. 2000. Sub genome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L. ). Proc. Natl. Acad. Sci., USA, 97: 13436–14441.

    Article  PubMed  CAS  Google Scholar 

  • TAGI. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408: 796–815.

    Article  Google Scholar 

  • Tarchini R., Biddle P., Winel and R., Tingey S. and Rafalski A. 2000. The complete sequence of 340 kb of DNA around the rice Adhl-Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell, 12: 381–391.

    PubMed  CAS  Google Scholar 

  • Tikhonov A. P., Sanmiguel P. J., Nakajima Y., Gorestein N. M., Bennetzen J. L. and Avramova Z. 1999. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc. Natl. Acad. Sci., USA, 96: 7409–7414.

    CAS  Google Scholar 

  • Trask B., Pinkel D. and Van den Engh G. 1989. The proximity of DNA sequences in interphase cell nuclei correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics, 5: 710–717.

    Article  PubMed  CAS  Google Scholar 

  • Vega J. M., Abbo S., Feldman M. and Levy A. A. 1994. Chromosome painting in plants: In situ hybridization with a DNA probe from a specific microdissected chromosome arm of common wheat. Proc. Natl. Acad. Sci., USA, 91: 12041–12045.

    CAS  Google Scholar 

  • Vosa C. G. 1970. Heterochromatin recognition with fluorochromes. Chromosoma, 30: 366–371.

    Article  Google Scholar 

  • Wang M. L., Atkinson M. D., Chinoy C. N., Devos K. M. and Gale M. D. 1992. Comparative RFLP-based genetic maps of barley chromosome 5 (1H) and rye chromosome 1R. Theor. Appl. Genet., 84: 339–344.

    Article  Google Scholar 

  • Wang R. L., Stec A. O., Hey J., Lukens L. and Doebley J. 1999. The limits of selection during maize domestication. Nature, 398: 236–239.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z. M., Le Thierry D’Ennequin M., Panaud O., Gale M. D., Sarr A. and Devos K. M. 2001. Trait mapping in foxtail millet. Science, 290: 2114–2117.

    Google Scholar 

  • Wei F., Gobelman-Werner K., Morroll S. M., Kurth J., Mao L., Wing R. A., Leister D. M., Schulze-Lefert P. and Wise R. P. 1999. The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics, 153: 1929–1948.

    PubMed  CAS  Google Scholar 

  • Wicker T., Stein N., Albar L., Feuillet C., Schlagenhauf E. and Keller B. 2001. Analysis of contiguous 211 kb sequence in diploid wheat (Triticum monococcum L. ) reveals multiple mechanisms of genome evolution. Plant J., 26: 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Wiegant J., Kalle W., Mullenders L., Brookes S., Hoovers J. M. N., Dauwerse J. G., Van Ommen G. J. B. and Raap A. K. 1992. High resolution in situ hybridization using DNA halo preparations. Hum. Mol. Genet., 1: 587–591.

    Article  PubMed  CAS  Google Scholar 

  • Woese C. R. 2000. Interpreting the universal phylogenetic tree. PNAS, USA, 97: 8392–8396.

    Article  CAS  Google Scholar 

  • Zhong X., De Jong J. H. and Zabel P. 1996. Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res., 4: 24–28.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y., Hu Z., Dang B., Wang H., Deng X., Wang L. and Chen Z. 1999. Microdissection and microcloning of rye (Secale cereale L) chromosome 1R. Chromosoma, 108: 250–255.

    Article  PubMed  CAS  Google Scholar 

  • Zwick M. S., Islam-Faridi M. N., Czeschin Jr. D. J., Wing R. A., Hart G. E., Stelly D. M. and Price H. J. 1998. Physical mapping of the liguleless group in Sorghum bicolor using rice RFLP-selected sorghum BACs. Genetics, 148: 1983–1992.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H K Jain M C Kharkwal

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gupta, P.K., Dhar, M.K. (2004). Advances in Molecular Cytogenetics: Potential for Crop Improvement. In: Jain, H.K., Kharkwal, M.C. (eds) Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1040-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1040-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3773-0

  • Online ISBN: 978-94-007-1040-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics