Skip to main content

Plant Ideotype: The Concept and Application

  • Chapter

Abstract

The plant type concept in crop improvement started to receive major attention with the discovery of dwarfing genes in wheat and rice. The discovery and the analysis that followed showed that yield increases in many crops with the advent of scientific plant breeding are associated with better partitioning efficiency of the total dry matter produced, which on its own may have registered little increase. The two physiological parameters of crop yields — dry matter production and harvest index are now explicitly recognized as targets for future studies as major foodgrains of the world begin to reach a saturation point in their yields. The present paper describes the evolution of the plant type concept and discusses its wider implications. The concept is particularly relevant for modernization of traditional agriculture where genetic diversity for plant types could help to develop improved crop varieties responsive to applications of fertilizers, irrigation and other farm inputs. The plant type genes could help to accelerate the process of crop improvement in many of the developing countries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akita S. 1989. Improving yield potential in tropical rice. In: Progress in irrigated rice research. International Rice Research Institute, Philippines, pp. 41–73.

    Google Scholar 

  • Atkins I. M. and Norris M. J. 1955. The influence of awns on yield and certain morphological characters of wheat. Agron J., 47: 218–220.

    Article  Google Scholar 

  • Austin R. B. and Jones H. G. 1975. The physiology of wheat. Plant Breeding Inst. Ann. Rep., 1974. pp 20–73 Cambridge U. K.

    Google Scholar 

  • Austin R. B., Edrich J. A., Ford M. A. and Blackswell R. D. 1977. The fate of dry matter carbohydrates and C loss from leaves and stem of wheat during grain filling. Ann. Bot., 41: 1309–1313.

    CAS  Google Scholar 

  • Austin R. B., Bingham J., Blackwell R. D., Evans L. T., Ford M. A., Morgan C. L. and Taylor M. 1980. Genetic improvement in winter wheat yields since 1900 and associated physiological changes. J. Agric. Sci., 94 675–689.

    Article  Google Scholar 

  • Austin R. B. Morgan C. L., Ford M. A. and Bhagwat S. G. 1982. Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species. Ann. Bot., 49: 177–189.

    Google Scholar 

  • Austin R. B., Ford M. A. and Morgan C. L. 1989. Genetic improvement in the yield of winter wheat. A further evaluation J. Agric. Sci., 112 295–302.

    Article  Google Scholar 

  • Baldochi D. D., Verma S. B., Rosenberg N. J., Blad B. L., Garay A. and Specht J. E. 1983. Leaf pubescence effects on the mass and energy exchange between soybean canopies and the atmosphere. Agron J., 75: 537–539.

    Article  Google Scholar 

  • Bidinger F., Muscrave R. B. and Fisher R. A. 1977. Contribution of stored parenthesis assimilates to grain yield in wheat and barley. Nature (London), 270: 431–433.

    Article  Google Scholar 

  • Biscoe P. V. and Gallagher J. N. 1977. Weather, dry matter production and yield. In: Environmental effects of crop physiology, (eds. ) J. J. Lendsberg and C. V. Cutting. Academic Press, London.

    Google Scholar 

  • Bremner P. M. and Rawson H. M. 1972. Fixation of 14C2 by flowering and nonflowering glumes of the wheat ear and pattern of transport of label individual grains. Aust. J. Biol. Sci., 25: 921–930.

    Google Scholar 

  • Chang T. T. and Vergara B. S. 1972. Ecological and genetic information on adaptability and yielding ability in tropical varieties. ‘Rice Breeding’. Int. Rice Res. Inst., 431–453.

    Google Scholar 

  • Crosbie T. M. and Moch J. J. 1981. Changes in physiological traits associated with grain yield improvement in three maize breeding programmes. Crop Sci., 21: 255–259.

    Article  Google Scholar 

  • Cox T. S., Shroyer J. P., Lui B. H., Sears R. G. and Martin J. J. 1988. Genetic improvement in agronomic traits of hundred winter wheat cultivars from 1919 to 1987. Crop Sci., 28: 756–760.

    Article  Google Scholar 

  • Dantuma G. 1973. Rates of photosynthesis in the levels of wheat and barley varieties. Netherland J. Agri. Sci., 21: 188–189.

    CAS  Google Scholar 

  • Darinhaff G. M. and Shibles R. M. 1970. Varietal differences in net photosynthesis of soybean leaves. Crop Sci., 10: 42–45.

    Article  Google Scholar 

  • Decherd E. L., Busch R. H. and Kafoid K. 1985. Physiological aspects of spring wheat improvement, In: Exploitation of Physiological and Genetic Variability to Enhance Crop Productivity, (eds. ) J. E. Harper, L. E. Schrader and R. W. Howel., Ann. Soc. Plt Phy. Rachville Maryland.

    Google Scholar 

  • Donald C. M. 1968. The breeding of crop ideotype. Euphytica, 17: 385–403.

    Article  Google Scholar 

  • Donald C. M. 1982. In search of yield. J. Austral. Inst. Agric. Sci., 28: 171–178.

    Google Scholar 

  • Donald C. M. and Hamblin J. 1976. The biological yield and harvest index of cereals in agronomic and plant breeding criteria. Adv. Agron., 28: 361–405.

    Article  Google Scholar 

  • Duncans W. G., Mellaud R. L. M., Grow and Boote K. J. 1978. Physiological aspects of peanut yield improvement. Crop Sci., 18: 1015–1020.

    Article  Google Scholar 

  • Evans L. T. 1975. Wheat. In: ‘Crop Physiology’, Cambridge Univ. Press. Camb. U. K.

    Google Scholar 

  • Evans L. T. 1980. The natural history of crop yield. Amer. Sci., 68: 388–397.

    Google Scholar 

  • Evans L. T. 1987. Opportunities for increasing yield potential of wheat. “Future Development of Maize and Wheat in Third World”, pp 79–96 (CIMMYT, Mexico, D. F. )

    Google Scholar 

  • Evans L. T. 1993. Crop Evolution, Adaptation and Yield. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Evans L. T. and Dunstone R. L. 1970. Some physiological aspects of evolution in wheat. Aust. J. Biol. ScL, 23: 725–741.

    Google Scholar 

  • Evans L. T., Bingham J., Jackson P. and Sutherl and J. 1972. Effect of awns and drought on the supply of photosynthate and its distribution in winter wheat ears. Ann. Appl. Biol., 70: 67–78.

    Article  Google Scholar 

  • Fisher R. A. 1985. Number of kernals in wheat crop and the influence of solar radiation and temperature. J. Agric. Sci., 100: 447–461.

    Article  Google Scholar 

  • Gent M. P. N. 1995. Canopy light interception, gas exchange and biomass in reduced height isolines of winter wheat. Crop. Sci., 35: 1636–1642.

    Article  Google Scholar 

  • Gefford R. M. and Evans L. T. 1981. Photosynthesis, carbon partitioning yield. Ann. Rev. Plt. Phy., 32: 485–509.

    Article  Google Scholar 

  • Good N. E. and Bell D. H. 1980. Photosynthesis, plant productivity and crop yield. In: Biology of Crop Productivity, (ed. ) P. S. Carlson, Acad. Press.

    Google Scholar 

  • Gregory P. J. 1988. Rust growth of chickpea, faba bean, lentil and pea and effect of water and salt stresses. In: World Crops — cool season food legumes. (ed. ) R. J. Summerfield, Klower Dordrecht. pp 857–867.

    Google Scholar 

  • Gregory P. J., Sheperd K. P. and Cooper P. J. M. 1984. Effect of fertiliser on root growth and water use of barley in northern Syria. J. Agric. Res., 43: 555–573.

    Article  Google Scholar 

  • Hamblin J. and Tennant D. 1987. Root length, density and crop water update. How well are theory correlated. Aust. J. Agric. Res., 38: 513–527.

    Article  Google Scholar 

  • Hamblin J., Tennant D. and Perry M. W. 1990. The cost of stress: Dry matter partitioning changes with seasonal supply of water and nitrogen to dryland wheat. Plant Soil, 122: 47–58.

    Article  Google Scholar 

  • Hay R. K. M. and Kirby E. J. M. 1991. Convergence and synchrony. A review of coordination of development in wheat. Aust. J. Agric. Res., 42: 661–700.

    Article  Google Scholar 

  • IRRI. 1989. Towards 2000 and beyond. Manila Philippines.

    Google Scholar 

  • Jain H. K. 1975. Breeding for yield and other attributes in grain legumes. Ind. J. Genet., 35: 167–187.

    Google Scholar 

  • Jain H. K. 1986. Eighty years of post Mendelian breeding for crop yield: Nature of selection pressure and future potential. Ind. J. Genet., 46: (Suppl. ) 30–53.

    Google Scholar 

  • Jain H. K. and Kulshreshtha V. P. . 1976. Dwarfing genes and breeding for yield in bread wheat. Z. Pflanzenzuchtung, 76: 102–112.

    Google Scholar 

  • Jain H. K., Mukerjee B. K., Singh R. D. and Agrawal K. N. 1976. The present basis and possibilities of breeding for yield in maize. Z. Pflanzenzuchtg, 76: 90–101

    Google Scholar 

  • Johnson K. D., Richard R. A. and Turner N. C. 1983. Yield water relations and surface reflectance of near isogenic wheat lines differing in glaucousness. Crop Sci., 23: 318–325.

    Article  Google Scholar 

  • Khan M. A. and Tsunoda S. 1970. Evolutionary trends in leaf photosynthesis and related leave characters among cultivated wheat species and wild relatives. Jpn. J. Breeding, 200: 133–140.

    Google Scholar 

  • Khush G. S. and Peng S. 1996. Breeding yield frontiers of rice. Proceedings of workshop on Revising yield potential in wheat, breeding yield barriers. CIMMYT, Mexico.

    Google Scholar 

  • Kirby E. J. M. and Appleyard M. 1987. Development and structure of wheat plant. In: “Wheat Breeding — its scientific Basis”, (ed. ) F. G. H. Lipton, Chapman and Hall, London and New York.

    Google Scholar 

  • Kirby E. J. M., Siddique K. H. M., Perry M. W., Kaesehagen D. and Sterm W. R. 1989. Variation in spikelet initiation and ear development of old and modern wheat varieties. Field Crops Res., 21: 113–128.

    Article  Google Scholar 

  • Kobata T., Palta J. A. and Turner N. C. 1992. Rate of development of post-anthesis water deficits and grain filling of spring wheat. Crop Sci., 32 1238–1242.

    Article  Google Scholar 

  • Kropff M. J., Crossman K. G., Peng S., Mathows R. B. and Setter T. L. 1994. Quantitative understanding of yield potential. In: ‘Breeding the Yield Barrier’, (ed. ) K. G. Crossman. IRRI Philippines.

    Google Scholar 

  • Karoda E., Oobawa T. and Ishhara K. 1989 Analysis on difference of dry matter production between rice cultivars with different plant height in relation to gross diffusion inside stands. Jpn. J. Crop. Sci., 58: 374–382.

    Article  Google Scholar 

  • Ladha J. K., Kirbs G. J. D., Peng S., Reddy K., Reddy P. M., Singh U. and Bannet J. 1995. Opportunities for increased nitrogen use efficiency from improved rice germplasm in lowland rice ecosystem. IRRI workshop on nutrient use efficiency of cropping systems.

    Google Scholar 

  • Loss S. P. and Siddique K. H. M. 1994. Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv. Agron., 52: 269–276.

    Google Scholar 

  • Loss S. P., Kirby E. J. M., Siddique K. H. M. and Perry M. W. 1989. Grain growth and development of old and modern Australian wheat. Field Crops Res., 21: 411–416.

    Article  Google Scholar 

  • Lupton F. G. H., Oliver R. H., Ellis F. B., Barnes B. T., House K. R., Wellonk P. J. and Taylor P. J. 1978. Root and shoot growth of semi-dwarf and taller winter wheats. Ann. Appl. Biol., 77: 129–144.

    Article  Google Scholar 

  • Mabino A. and Mal T., Obera K. 1983. Photosynthesis and ribulase-1, 5-biophosphate carboxylase in rice leaves. PL Physics, 73: 1002–1007.

    Article  Google Scholar 

  • Morgan J. A. and Le Cain D. R. 1991. Leaf gas exchange and related leaf traits among 15 winter wheat genotypes. Crop Sci., 31: 443–448.

    Article  Google Scholar 

  • Ohno Y. 1976. Varietal differences in photosynthetic efficiency and dry matter production in Indian rice. Tech. Bull. No. 9. Tropical Agri. Res. Centre, Min. Agric. and Forestry, Japan.

    Google Scholar 

  • Olugbeni L. B., Austin R. B. and Bingham J. 1976. The influence of temperature on the contribution of awns to wheat. Ann. Appl. Biol., 84: 241–250.

    Article  Google Scholar 

  • Paccaud F. X., Fossats A. and Cao H. S. 1985. Breeding for yield and quality in winter wheat: Consequences for nitrogen uptake and partitioning efficiency. Z. Pflanzenzucht, 94: 89–100.

    Google Scholar 

  • Perry M. W. and Antouno M. 1989. Yield improvement and associated characteristics of some Australian spring wheats introduced between 1860 and 1982. Aust. J. Agric. Res., 40: 457–472.

    Google Scholar 

  • Peltonen Sainio P. 1990. Genetic improvements in the structure of oat stands in northern growing conditions during this century. Plant Breeding, 104: 340–345.

    Article  Google Scholar 

  • Pheloung P. C. and Siddique K. H. M. 1991. Contribution of stem dry matter to grain yield in wheat cultivars. Aust. J. PL Physiol., 18: 53–64.

    Article  Google Scholar 

  • Rajaram S., Singh R. P. and Ginhel M. Ven. 1996. Approaches to breeding wheat for wide adaptation. 8th Assembly of wheat breeding society of Australia. Canbara, Australia.

    Google Scholar 

  • Rasmusson D. C. 1987. An evaluation of ideotype breeding. Crop Sci., 27: 1140–1146.

    Article  Google Scholar 

  • Rasmusson D. C. 1987. Ideotype and yield breeding in barley. Proc 5th Barley Genetic Symp., Obayame, Japan.

    Google Scholar 

  • Rasmusson D. C. and Gengenbach B. C. 1983. Breeding for physiological traits. In: “Crop Breeding”, (ed. ) Wood D. R., Am. Soc. Agron., USA.

    Google Scholar 

  • Rawson H. M. and Evans L. T. 1971. The contribution of stem reserves to grain development in a range of wheat cultivars of different height. Aust. J. Agric. Res., 4: 389–397.

    Google Scholar 

  • Rawson H. M., Hindmarsh J. H., Fischer R. A. and Stochman Y. M. 1983. Changes in leaf photosynthesis with plant ontogeny and relationship with yield per ear on wheat cultivars and 120 progeny. Aust. J. Plt. Physiol., 10: 503–514.

    Article  Google Scholar 

  • Richard R. A. 1996. Increasing yield potential source in its strength. Proc. of workshop on Breeding Yield Barriers in Wheat, CIMMYT, Mexico.

    Google Scholar 

  • Richard R. A. and Passioura J. B. 1989. A breeding programme to reduce the diameter of the major xylem vessel in seminal roots of wheat and its effect on grain yield in rainfed environments. Aust. J. Agric. Res., 40: 943–950.

    Article  Google Scholar 

  • Siddique K. H. M., Kirby E. J. M. and Perry M. W. 1989a. Ear stem ratio in old and modern wheat varieties: Relationship with improvement in number of grains per ear and yield. Field Crops Res., 21: 59–78.

    Article  Google Scholar 

  • Siddique K. H. M., Beiford R. K., Perry M. W. and Tennant D. 1989b. Growth, development and light interception of old and modern wheat cultivars in mediterranean environment. Aust. J. Agric. Res., 40: 473–487.

    Google Scholar 

  • Simmons S. R. 1987. Growth development and physiology. “Wheat and Wheat Improvement”, Agron Monogr. No. 13.

    Google Scholar 

  • Sasahara T., Tabachashi T., Kayaba T. and Tsunoda S. 1992. A new strategy for increasing plant productivity and yield in rice. Int. Rice Comm. Newsl., 41: 1–4.

    Google Scholar 

  • Slafer G. A. and Andreade F. H. 1993. Physiological attributes related to the generation of grain yield in bread wheat cultivars released at different ears. Field Crops Res., 31: 351–367.

    Article  Google Scholar 

  • Salfer G. A., Andreade F. H. and Feingold S. E. 1990a. Genetic improvement of bread wheat in Argentina: Relationbships between nitrogen and dry matter. Euphytica, 50: 63–71.

    Article  Google Scholar 

  • Slafer G. A., Andrade F. H. and Satarre E. H. 1990b. Genetic improvement effects on pre-anthesis physiological attributes related to wheat grain yield. Field Crops Res., 23: 255–264.

    Article  Google Scholar 

  • Slafer G. A., Calderini D. F. and Mirales D. J. 1996. Generation of yield components and compensation in wheat. Opportunities for further increasing yield potential. Proceeding of workshop “Breaking Yield Barriers in Wheat”, CIMMYT. Mexico.

    Google Scholar 

  • Turner N. C. 1986. Crop water deficits: A decade of progress. Adv. Agron., 39: 1–51.

    Article  Google Scholar 

  • Turner N. C. and Jones M. 1980. Turgour maintenance in osmotic adjustment. A review and evaluation, In: “Adoption to Water and High Temperature Stress”, (eds. ) N. C. Turner, P. J. Kramer, pp. 203–215. Wiley, New York.

    Google Scholar 

  • Wallace D. J., Oyburn J. L. and Munger H. M. 1972. Physiological genetics of crop yield. Adv. Agron., 24: 92–146.

    Google Scholar 

  • Waller D. and Sivah M. 1986. Improving photosynthesis by genetic means. Span, 2: 47–49.

    Google Scholar 

  • Wingeter M., Mc. Cullough D. E. and Hunt L. A. 1989. Leaf gas exchange and plant growth of winter rye, triticale and wheat under contributing temperature extremes. Crop. Sci., 29: 1256–1260.

    Article  Google Scholar 

  • Yoshida S. 1981. Fundamentals of rice crop sciences. IRRI. Philippines.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H K Jain M C Kharkwal

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tandon, J.P., Jain, H.K. (2004). Plant Ideotype: The Concept and Application. In: Jain, H.K., Kharkwal, M.C. (eds) Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1040-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1040-5_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3773-0

  • Online ISBN: 978-94-007-1040-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics