Skip to main content

Classical and Molecular Concepts of Heterosis

  • Chapter
Plant Breeding
  • 1777 Accesses

Abstract

Heterosis has contributed significantly towards increased crop production and it is the basis of multi-billion dollar agri-business in the world. Although extensive studies have been conducted yet the physiological, biochemical and molecular explanation of this phenomenon remains largely unexplained. During 1940s through 1970s, advances made in quantitative genetics led to development of dominance, over-dominance, and epistasis (classical concepts) theories of heterosis. Consequently, breeding strategies led to establishment of heterotic group for hybrid breeding. Despite these successes, plant breeders and geneticists are not able to predict the extent of heterosis. Over the years, several physiological as well as biochemical concepts have been put forward but these are unable to predict heterotic combinations. Molecular marker technologies are now being used to identify and locate heterotic gene blocks which can be incorporated in the selected parental lines to develop heterotic hybrids which result from the mechanisms that are not likely to be captured in an inbred viz., loci with dosage divergence between inbreds, and differential DNA methylation in hybrids vs. inbreds. With the help of transformation technology in future it may also be possible to transfer heterotic chromosome blocks or QTL across species in parental lines. So far, utilization of heterosis has gone ahead of the understanding of this phenomenon, however, in future, use of molecular and transformation tools should increase our understanding of heterosis such that it may lead the path to better utilization of heterosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaba M. and Yabuno T. T. 1975. Breeding for saline-resistant varieties of rice. III. Response of F1 hybrids to salinity in reciprocal crosses between Jhona 349 and Magnolia. Jpn. J. Breed., 25: 215–220.

    Google Scholar 

  • Bauman L. F. 1959. Evaluation of non-allelic gene interaction in determining yield, ear height, and kernel row number in corn. Agron. J., 51: 531–534.

    Article  Google Scholar 

  • Bernardo R. 1992. Relationship between single cross performance and molecular marker heterozygosity. Theor. Appl. Genet., 83: 628–634.

    Article  Google Scholar 

  • Blanco L., Casal C., Akita S. and Virmani S. S. 1990. Biomass, grain yield and harvest index of F1 rice hybrids and inbreds. IREN, 15: 9–10.

    Google Scholar 

  • Bruce A. B. 1910. The Mendelian theory of heredity and augmentation of vigour. Science, 32: 627–628.

    Article  PubMed  CAS  Google Scholar 

  • Cedar H. 1984. DNA methylation and gene expression. In: DNA methylation, biochemistry and biological significance, (eds) A. Razin et al. Springer Verlag, New York, pp 147-164.

    Google Scholar 

  • Chauhan J. S., Virmani S. S., Aquino R., Vergara B. S. 1983. Evaluation of hybrid rice for ratooning ability. IRRN, 8: 6.

    Google Scholar 

  • Cheverud J. M. and Routman E. J. 1995. Epistasis and its contribution to genetic variance components. Genetics, 139: 1455–1461.

    PubMed  CAS  Google Scholar 

  • Cherry J. H., Hagerman R. H., Rutger J. N. and Jones B. J. 1961. Acid-soluble nucleotides and ribonucleic acid of different corn inbreds and single cross hybrids. Crop Sci., 1: 133–137.

    Article  CAS  Google Scholar 

  • Crow J. F. 1948. Alternative hypothesis of hybrid vigour. Genetics, 33: 477–487.

    PubMed  CAS  Google Scholar 

  • Crow J. F. 1952. Dominance and overdominance. pp 282–297. In: Heterosis, (ed. ) J. W. Gowen Iowa State college Press, Ames

    Google Scholar 

  • Crow J. F. 2000. The rise and fall of overdominance. In: Plant Breeding Reviews, 17: 225–257.

    Google Scholar 

  • Davenport C. B. 1908. Degeneration, albinism and inbreeding. Science, 28: 454–455.

    Article  PubMed  CAS  Google Scholar 

  • Dudley J. W., Saghai Maroof M. A. and Rufener G. K. 1991. Molecular markers and grouping of parents in maize breeding program. Crop Sci., 31: 718–723.

    Article  Google Scholar 

  • Duvick N. D. 1999. Heterosis: Feeding people and protecting natural resource. In: Genetics and Exploitation of Heterosis in Crop, (eds. ) J. G. Coors and S. Pandey, 19–29.

    Google Scholar 

  • East E. M. 1908. Inbreeding in corn. Kept. Connecticut Agric. Expt. Sta. For 1907. pp. 419–428.

    Google Scholar 

  • East E. M. and Jones D. F. 1919. Inbreeding and outbreeding. J. B. Lippincott Co., Philadelphia, PA

    Book  Google Scholar 

  • East E. M. 1936. Heterosis, Genetics, 21: 375–397.

    PubMed  CAS  Google Scholar 

  • East E. M. and Hayes H. K. 1912. Heterozygosis in evolution and in plant breeding. U S Dept. Agric. Bur. Plant Indust. Bull, 243, pp. 58.

    Google Scholar 

  • Eastin J. D., Petersen C. L., Zavala-Garcia F. and Dhopte A. 1999. Potential heterosis associated with developmental and metabolic processes in sorghum and maize. In: Genetics and Exploitation of Heterosis in Crop, (eds. ) J. G. Coors and S. Pandey. 205–220.

    Google Scholar 

  • Eastin J. D., Castleberry R. M., Gerik T. J., Hultwuist J. H., Mahalakshmi V., Ogunlela V. B. and Rice J. R. 1983. Physiological aspects of high temperature and water stress. In: Crop reactions to water and temperature stresses in humid, temperate climates, (eds. ) C. D. Raper Jr. and P. J. Kramer. Westview Press, Boulder, Co. pp 91–112.

    Google Scholar 

  • Evans L. T. 1993. Crop evolution, adaptation and yield. Cambridge University Press, New York.

    Google Scholar 

  • Falconer D. S. and Mackey T. F. C. 1996. Introduction to quantitative genetics. 4th ed. Longman, Essex, England.

    Google Scholar 

  • Gamble E. E. 1962. Gene effects in corn (Zea mays L. ) I. Separation and relative importance of gene effects for yield. Canad. J. PL Sci., 42: 339–348.

    Article  Google Scholar 

  • Gartner C. F. 1849. Versuche und Beobachtungen über die Bastarderzeugung im Pflanzenreich. 791 pp Stuttgart

    Google Scholar 

  • Gorsline G. W. 1961. Phenotypic epistasis for ten quantitative characters in maize. Crop Sci., 1: 55–58.

    Article  Google Scholar 

  • Gowen G. W. 1952. Hybrid vigour in Drosophila. pp. 474–493. In: Heterosis, (ed. ) J. W. Gowen. Iowa State College Press, Arnes

    Google Scholar 

  • Graham G. I., Wolff D. W. and Stuber C. W. 1997. Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci., 37: 1601–1610.

    Article  CAS  Google Scholar 

  • Hageman R. H., Leng E. R. and Dudley J. W. 1967. A biochemical approach to corn breeding. Advan. Agron., 19: 45–86.

    Article  CAS  Google Scholar 

  • Hallauer A. R. 1999. Heterosis: what have we learnt What have we done? Where are we headed? In: Genetics and Exploitation of Heterosis in Crop, (eds. ) J. G. Coors and S. Pandey. pp. 483–492.

    Google Scholar 

  • Hallauer A. R. and Miranda J. B. 1988. Quantitative genetics in maize breeding. 2nd ed., Iowa State Univ. Press, Ames.

    Google Scholar 

  • Hepburn A. G., Belanger F. C. and Mattheis J. R. 1987. DNA methylation in plants. Developmental Genetics, 8: 475–493.

    Article  CAS  Google Scholar 

  • Hollick J. B., Dorweiler J. E. and Chandler V. L. 1997. Paramutation and related allelic interactions. Trends Genet., 13: 302–308.

    Article  PubMed  CAS  Google Scholar 

  • Hull F. H. 1945. Recurrent selection for specific combining ability in corn. J. Am. Soc. Agron., 37: 134–145.

    Article  Google Scholar 

  • Jinks J. L. 1983. Biometrical genetics of heterosis. In: Heterosis-Reappraisal of the theory and practice, (ed. ) Frankal R. Springer-Verlag pp 1–46.

    Google Scholar 

  • Johnson S. W. 1891. How crops growl Orange Judd & Co., New York.

    Google Scholar 

  • Jones D. F. 1917. Dominance and linked factors as a means of accounting for heterosis. Genetics, 2: 466–479.

    PubMed  CAS  Google Scholar 

  • Keeble F. and Pellew C. 1910. The mode of inheritance of stature and time of flowering in peas (Pisuem sativum), J. Genet., 1: 47–56.

    Google Scholar 

  • Koelreuter J. G. 1766. Vorlaufigennachircht von einigen das Geschlecht der Pflanzen betreffenden versuchen und beobachtungen. 266 pp. Leipzig.

    Google Scholar 

  • Lamkey K. R. and Edwards J. W. 1999. Quantitative genetics of heterosis. In: Genetics and Exploitation of Heterosis in Crop. (eds. ) J. G. Coors and S. Pandey. pp 31–48.

    Google Scholar 

  • Lee M. 1999. Towards Understanding and manipulating heterosis in crop plants-can molecular genetics and genome projects help? In: Genetics and Exploitation of Heterosis in Crop. (eds. ) J. G. Coors and S. Pandey. pp. 185–194.

    Google Scholar 

  • Li Z. K., Luo L. J., Mei H. W., Wang D. L., Shu Q. Y., Tabien R., Zhong D. B., Ying C. S., Stansel J. W., Khush G. S. and Paterson A. H. 2000. Genetic basis of inbreeding depression and heterosis in rice (Oryza sativa L): I. Biomass and grain yield. Genetics.

    Google Scholar 

  • Mackill D. J. 1995. Classification of japonica rice cultivars with RAPD markers. Crop Sci., 35: 889–894.

    Article  CAS  Google Scholar 

  • Mather K. and Jinks J. L. 1982. Biometrical Genetics 3rd ed. Chapman and Hall, London.

    Google Scholar 

  • McDonald D. J., Stansel J. W. and Gilmore E. C. 1974. Breeding for high photosynthetic rate in rice. Indian J. Genet., 34: 1068–1073.

    Google Scholar 

  • Moser H. and Li M. 1994. RFLP variation and genealogical distance, multivariate distance, heterosis and genetic variation in oats. Theor. Appl. Genet., 87: 947–956.

    Article  CAS  Google Scholar 

  • Mumm R. H. and Dudley J. W. 1994. A classification of 148 U. S. maize inbreds. I. Cluster analysis based on RFLPs. Crop Sci., 34: 842–851.

    Article  Google Scholar 

  • Murayama S., Miyasato Y. and Nose A. 1982. Studies on dry matter production of F1 rice hybrids. I. Heterosis in photosynthetic activity. Jpn. J. Crop Sci., (Spe. Issue) 2: 85–86 (in Japanese)

    Google Scholar 

  • Murayama S, Ogasawara N., Miyasato S. and Nose H. 1984. Dry matter production of F1 rice hybrids. III. Heterosis in photosynthetic activity. Jpn. J. Crop Sci., (Spe. Issue) 53: 100–101 (in Japanese).

    Google Scholar 

  • Murayama S, Miyasato K. and Nose A. 1987. Studies on dry matter production of F1 rice hybrids. 1. Heterosis in the single leaf photosynthetic rate. Jpn. J. Crop Sci., 56: 198–203.

    Article  Google Scholar 

  • Nebiolo C. M., Kaczazczyk W. J. and Ulrivh V. 1983. Manifestation of hybrid vigor in RNA synthesis parameters by corn seedling protoplasts in the presence and absence of gibberellic acid. Plant Sci. Lett., 28: 95–206.

    Google Scholar 

  • Ponnuthurai S., Virmani S. S. and Vergara B. S. 1984. Comparative studies on the growth and grain yield of some F1 rice (Oryza sativa L. ) hybrids. Philipp. J. Crop. Sci., 9: 183–193.

    Google Scholar 

  • Philips R. L. 1999. Research needs in heterosis. In: Genetics and Exploitation of Heterosis in Crop. (eds. ) J. G. Coors and S. Pandey. pp. 501–507.

    Google Scholar 

  • Pray L. A. and Goodnight C. J. 1995. Genetic variability in inbreeding depression in the flour beetle, T. castaneum. Evolution, 49: 179–188.

    Google Scholar 

  • Rangaswamy M. and Jayamani P. 1996. Hybrid rice research in Tamil Nadu. In: Hybrid Rice Technology, (ed. ) M. Rangaswamy, School of Genetics, Tamil Nadu Agric. Univ. Coimbatore, India.

    Google Scholar 

  • Rice J. R. and Eastin J. D. 1986. Grain sorghum root responses to water and temperature during reproductive development. Crop Sci., 26: 547–551.

    Article  Google Scholar 

  • Richards E. J. 1997. DNA methylation and plant development. Trends Genet., 13: 319–323.

    Article  PubMed  CAS  Google Scholar 

  • Romagnoli S., Maddaloni M., Livini C. and Motto M. 1990. Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L. ) plantlets. Theor. Appl. Genet., 80: 767–775.

    Article  Google Scholar 

  • Senadhira D. and Virmani S. S. 1987. Survival of some F1 rice hybrids and their parents in saline soil. IRRN, 12: 14–15.

    Google Scholar 

  • Shamel A. D. 1905. The effect of inbreeding in plants. U S Dept. Agric. Year book for 1905. pp 377–392.

    Google Scholar 

  • Shull G. H. 1908. The composition of a field of maize. Rept. Amer. Breeders Assoc, 4: 296–301.

    Google Scholar 

  • Shull G. H. 1914. Duplicate genes for capsule form in Bursa bursa-pastoris. Zeitschr. Induk. Abstamm. U. verebungsl., 1: 947–149.

    Google Scholar 

  • Shull G. H. 1952. Beginning of the heterosis concept, pp 14–48. In: Heterosis, (ed. ) J. W. Gowen. Iowa State Cllege Press.

    Google Scholar 

  • Smith J. S. C. and Smith O. S. 1992. Fingerprinting crop varieties. Adv. Agronomy, 47: 85–139.

    Article  CAS  Google Scholar 

  • Smith J. S. C. and Smith O. S. 1991. Restriction fragment length polymorphisms can differentiate among U. S. maize hybrids. Crop Sci., 31: 893–899.

    Article  Google Scholar 

  • Sprague G. F., Russel W. A., Penny L. H., Horner R. W. and Hanson W. D. 1962. Effect of epistasis on grain yeld in maize. Crop Sci., 2: 205–208.

    Article  Google Scholar 

  • Srivastava H. K. 1981. Intergenomic interaction, heterosis, and improvement of crop yield. Adv. Agron., 34: 117–195.

    Article  CAS  Google Scholar 

  • Stigfield G. H. 1950. Heterozygosis and hybrid vigour in maize. Agron. J., 42: 145–152.

    Article  Google Scholar 

  • Stuber C. W., Lincoln S. E., Wolff D. W., Helentjaris T. and Lander E. S. 1992. Identification of genetic factors contributioing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 132: 823–839.

    PubMed  CAS  Google Scholar 

  • Stuber C. W. 1994a. Enhancement of grain yield in maize hybrids using marker facilitated introgression of QTLs. In: Analysis of Molecular Marker Data. Corvallis. Oregon.

    Google Scholar 

  • Stuber C. W. 1994b. Heterosis in plant breeding. Plant Breeding Rev., 12: 227–251.

    Google Scholar 

  • Stuber C. W. 1999. Biochemistry, molecular biology, and physiology of heterosis. In: Genetics and Exploitation of Heterosis in Crop. (eds. ) J. G. Coors and S. Pandey. pp. 173–183.

    Google Scholar 

  • Stuber C. W., Williams W. P. and Moll R. H. 1973. Epistasis in maize (Zea mays). III. Significance in predictions of hybrid performances. Crop Sci., 13: 195–200.

    Article  Google Scholar 

  • Tsaftaris A. S. 1990. Biochemical analysis of inbreds and their heterotic hybrids in maize. In: Isozymes: Structure, function and use in biology and medicine. (eds. ) A. Ogita and C. Marken. Wiley-Liss, New York.

    Google Scholar 

  • Tsaftaris A. S., Kafka M. and Polidoros A. 1997. Epigenetic modifications of total genomic maize DNA. the role of growth conditions. In: Genetics, biochemistry and breeding of maize and sorghum, (ed. ) A. S. Tsaftaris. The Royal Soc. of Chem. Press. Cambridge, England.

    Google Scholar 

  • Tsaftaris A. S., Kafka M., Polidoros A. and Tani E. 1999. Epigenetic change in maize DNA and heterosis. In: Genetics and Exploitation of Heterosis in Crop, (eds. ) J. G. Coors and S. Pandey. pp. 195–203.

    Google Scholar 

  • Tsaftaris A. S. and Polidoros A. 1993. Studying the expression of genes in maize parental inbreds and heterosis and non-heterotic hybrids. In: Proc. XII Eucarpia Maize and Sorghum Conf., Bergamo, Italy., (eds) A. Bianci et al.

    Google Scholar 

  • Tan N. C. 1994. Progress in hybrid rice program in Vietnam. International Rice Commission, 43: 23–28.

    Google Scholar 

  • Virmani S. S. 1996. Hybrid rice. Adv. Agron., 57: 377–461.

    Article  Google Scholar 

  • Virmani S. S. 1997. Hybrid rice research and development in the tropics. In: Proc. 3rd Int. Symp. on Hybrid Rice. Hyderabad, India 14-16 Nov. 1996.

    Google Scholar 

  • Whaley W. G. 1944. Heterosis. Bot. Rev., 10: 461–498.

    Article  Google Scholar 

  • Yu S. B., Li J. X., Xu C. G., Tan Y. F. and Gao Y. J. 1997. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci., USA, 94: 9226–9231.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler H. 1990. Role of plant physiology in assessing productivity potential under stress environment. In: Proc. of the Int. Cong. of Plant Physiology. Soc. Plant Phys. and Biochem. Water technology Center and Indian Agricultural Res. Inst. New Delhi. (eds. ) S. K. Sinha et al.

    Google Scholar 

  • Xiao J., Li J. X., Yuan L. and Tanksley S. D. 1995. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 140: 745–754.

    PubMed  CAS  Google Scholar 

  • Xiao J., Li J. X., Yuan L., McCouch S. R. and Tanksley S. D. 1996. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor. Appl. Genet., 92: 637–643.

    Article  CAS  Google Scholar 

  • Xu W., Virmani S. S., Hernandez J. E., Li Z. K. and Redona E. D. 1999. Association between simple sequence repeat (SSR) marker diversity, pedigree record, quantitative variation, and hybrid performance in rice. IRRN, 24: 10–11.

    Google Scholar 

  • Zhang Q., Gao Y. J., Yang S. H., Ragab R., Saghai Maroof M. A. and Li Z. B. 1994. A diallel analysis in elite hybrid rice based on RFLPs and microsatellites. Theor. Appl. Genet., 89: 185–192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H K Jain M C Kharkwal

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Virmani, S.S., Pandey, M.P., Singh, I.S., Xu, W.J. (2004). Classical and Molecular Concepts of Heterosis. In: Jain, H.K., Kharkwal, M.C. (eds) Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1040-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1040-5_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3773-0

  • Online ISBN: 978-94-007-1040-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics