Plant Breeding pp 317-332 | Cite as

Application of Biotechnology to Maize and Wheat Improvement



Today, scientists can take advantage of genes that are derived from various sources, including related and unrelated species, those identified via genetic mapping experiments and most recently from the efforts of functional genomics. Through the application of molecular genetics and genetic engineering, coupled. with conventional crossing approaches, these genes can be efficiently incorporated into modern plant varieties. One of the most studied traits at CIMMYT is abiotic stress tolerance, especially tolerance to water-limited conditions. Quantitative Trait Loci (QTL) mapping, has identified several regions of the maize genome involved in the response to water stress. Efforts are underway to identify the underlying genes in these regions and to determine their potential to further improve the water-stress responses in maize and wheat. Candidate gene approaches are also being used employing resistance-like sequences isolated from rice and maize, to find possible homologies with genes conditioning disease resistance in wheat. The possibility of utilizing markers identified for Lr4/Yr29 and Lr34/Yr18 in applications in the wheat breeding activities are being explored. While the PCR-based marker systems have allowed more effective and efficient genotyping, DNA-array technology offers a substantially increase the number of genes that can be analysed. Efforts are also underway to develop complete EST databases for many cereals, including maize and wheat. Marker-assisted selection for polygenic trait improvement is in an important transition phase, and this field is on the verge of producing convincing results. Considering the potential for the development of new strategies, the future for polygenic trait improvement through DNA markers and the contribution of this to plant breeding efforts worldwide, appear bright.


Quantitative Trait Locus Drought Tolerance Fusarium Head Blight Single Nucleotide Polymorphism Leaf Rust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe H., Yamaguchi-Shinozaki K., Urao T., Iwasaki T., Hosokawa D. and Shinozaki K. 1997. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell, 9: 1859–1868.PubMedGoogle Scholar
  2. Ahn S., Anderson J. A., Sorrells M. E. and Tanksley S. D. 1993. Homoeologous relationships of rice, wheat and maize chromosomes. Mol. Gen. Genet., 241: 483–490.PubMedCrossRefGoogle Scholar
  3. Bohnert H. J., Nelson D. E. and Jensen R. G. 1995. Adaptations to environmental stresses. Plant Cell, 7: 1099–1111.PubMedGoogle Scholar
  4. Börner A., Korzun V. and Worl and A. J. 1998. Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica, 100: 245–248.CrossRefGoogle Scholar
  5. Boyer J. S. 1982. Plant productivity and environment. Science, 218: 443–448.PubMedCrossRefGoogle Scholar
  6. Bray E. A. 1993. Molecular Responses to Water Deficit. Plant Physiologist, 103: 1035–1040.Google Scholar
  7. Bray E. A. 1997. Plant responses to water deficit. Trends in Plant Science, 2: 48–54.CrossRefGoogle Scholar
  8. Campbell S. A. and Close T. J. 1997. Dehydrins: genes, proteins and associations with phenotypic traits. New Phytol., 137: 61–74.CrossRefGoogle Scholar
  9. Chandler P. M. and Robertson M. 1994. A dehydrin cognate protein from pea (Pisum sativum L. ) with an atypical pattern of expression. Plant Mol. Biol., 26: 805–816.PubMedCrossRefGoogle Scholar
  10. Chao S. P., Sharp P. J., Worl and A. J., Warham E. J., Koebner R. M. D. and Gale M. D. 1989. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor. Appl. Genet., 78: 495–504.CrossRefGoogle Scholar
  11. Chu S., DeRisi J., Eisen M., Jutholl and J., Botstein D., Brown P. O. and Herskowitz I. 1998. The transcriptional program of sporulation in budding yeast. Science, 282: 699–705.PubMedCrossRefGoogle Scholar
  12. Cushman J. C. and Bohnert H. J. 2000. Genomic approaches to plant stress tolerance. Current Opinions in Plant Biol., 3: 117–124.CrossRefGoogle Scholar
  13. Demeke T., Laroche A. and Gaudet D. A. 1996. A DNA marker for the BT-10 common bunt resistance gene in wheat. Genome, 39: 51–55.PubMedCrossRefGoogle Scholar
  14. Devos K. M. and Gale M. D. 1992. The use of randomly amplified DNA markers in wheat. Theor. Appl. Genet., 84: 567–572.CrossRefGoogle Scholar
  15. Devos K. M., Atkinson M. D., Chinoy C. N., Liu C. and Gale M. D. 1992. RFLP based genetic map of the homeologous group 3 chromosomes of wheat and rye. Theor. Appl. Genet., 83: 931–939.CrossRefGoogle Scholar
  16. Devos K. M., Chao S. P., Li Q. Y., Simonetti M. C. and Gale M. D. 1994. Relationships between chromosome 9 of maize and wheat homeologous group 7 chromosomes. Genetics, 138: 1287–1292.PubMedGoogle Scholar
  17. Devos K. M., Dubcovsky J., Dvorák J., Chinoy C. N. and Gale M. D. 1995. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor. Appl. Genet., 91: 282–288.CrossRefGoogle Scholar
  18. Devos K. M., Miller T. E. and Gale M. D. 1993. Comparative RFLP maps of the homoeologous group 2 chromosomes of wheat, rye and barley. Theor. Appl. Genet., 85: 784–792.Google Scholar
  19. Dweikat I., Ohm H., Patterson F. and Cambron S. 1997. Identification of RAPD markers for 11 hessian fly resistance genes in wheat. Theor. Appl. Genet., 94: 419–423.CrossRefGoogle Scholar
  20. Eastwood R. F., Lagudah E. S. and Appels R. 1994. A direct search for DNA sequences linked to cereal cyst nematode resistance genes in Triticum tauschii. Genome, 37: 311–319.PubMedCrossRefGoogle Scholar
  21. Edmeades G. O., Bolanos J., Banziger M., Ribaut J. M., White J. W., Reynolds M. P. and Lafitte H. R. 1998. Improving crop yields under water deficits in the tropics. In: Crop Productivity and Sustainability — Shaping the Future, (eds. ) Chopra V. L., Singh R. B. and Varma A., Proceedings of Second International Crop Science Congress. Oxford and IBH, New Delhi, pp. 437–451.Google Scholar
  22. Feuillet C., Messmer M. M., Schachermayr G. and Keller B. 1995. Genetic and physical characterization of the Lrl leaf rust resistance locus in wheat (Triticum aestivum L. ). Mol. and Gen. Genet., 248: 553–562.CrossRefGoogle Scholar
  23. Gale, M. D., Atkinson, M. D., Chinoy, C. N. Harcourt, R. L., Jia, J., Li, Q. Y. and Devos, K. M. 1995. Genetic maps of hexaploid wheat. In: Proceeding of the 8th International Wheat Genetics Symposium, (eds. ) Li Z. S. and Xin Z. I., China Agricultural Scientech Press, Beijing, pp. 29–40.Google Scholar
  24. Gardiner J., Melia-Hancock S., Hoisington D. A., Chao S. and Coe E. H. 1993. Development of a core RFLP map in maize using an immortalized-F2 population. Genetics, 134: 917–930.PubMedGoogle Scholar
  25. Goodwin S. B., Hu X. Y. and Shaner G. 1998. An AFLP marker linked to a gene for resistance to Septoria tritici blotch in wheat. In: Proc. 9th Intl. Wheat Genet. Symp., 3: 108–110.Google Scholar
  26. Habban J., Helentjaris T., Sun Y. and Zinselmeier C. 1999. Utilizing new technologies to investigate drought tolerance in maize: a perspective from industry. In: Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited Environments, (eds. ) Ribaut J. M. and Pol and D., A Strategic Planning Workshop held at CIMMYT, El Batan, Mexico, 21-25 June (1999) Mexico D. F. : CIMMYT, pp. 154–155.Google Scholar
  27. Hartl L., Mori S. and Schweizer G. 1998. Identification of a diagnostic molecular marker for the powdery mildew resistance gene Pm4b based on fluorescently labelled AFLPs. Proc. 9th Intl. Wheat Genet. Symp., 111–113.Google Scholar
  28. Hartl L., Weiss H., Stephan U., Zeller F. J. and Jahoor A. 1995. Molecular identification of powdery mildew resistance genes in common wheat (Triticum aestivum L. ). Theor. Appl. Genet., 90: 601–606.CrossRefGoogle Scholar
  29. Hartl L., Weiss H., Zeller F. J. and Jahoor A. 1993. Use of RFLP markers for the identification of alleles of the Pm3 locus conferring powdery mildew resistance in wheat (Triticum aestivum L). Theor. Appl. Genet., 86: 959–963.CrossRefGoogle Scholar
  30. Heisey P. W. and Edmeades G. O. 1999. Maize production in drought-stressed environment: technical options and research resource allocation. In: World Maize Facts and Trends. CIMMYT 1997/98Google Scholar
  31. Helentjaris T., Weber T. and Wright S. 1986. Use of monosomies to map cloned DNA fragments in maize. Proc. Natl. Acad. Sci., 83: 6035–6039.PubMedCrossRefGoogle Scholar
  32. Hu X. Y., Ohm H. W. and Dweikat I. 1997. Identification of RAPD markers linked to the gene Pml for resistance to powdery mildew in wheat. Theor. Appl. Genet., 94: 832–840.CrossRefGoogle Scholar
  33. Ingram J. and Bartels D. 1996. The molecular basis of dehydration tolerance in plants. Annual Review Plant Physiology and Plant Molecular Biology, 47: 377–403.CrossRefGoogle Scholar
  34. Jia J., Devos K. M., Chao S. P., Miller T. E., Reader S. M. and Gale M. D. 1994. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pml2, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor. Appl. Genet., 92: 559–565.CrossRefGoogle Scholar
  35. Khairallah M., Guillén-Andrade H., Alarcon J., Rodriguez C., Ayala L., Henry M., Singh R. P., Jiang C., Sharp P. and Hoisington D. 1998. Mapping of durable resistance to leaf rust and tolerance to BYDV in wheat. In: Proc. 9th Intl. Wheat Genet. Symp., 3: 282–284.Google Scholar
  36. Kodama H., Hamada T., Horiguchi G., Nishimura M. and Iba K. 1994. Genetic enhancement of cold tolerance by expression of a gene for chloroplast w-3 fatty acid desaturase in transgenic tobacco. Plant Physiology, 105: 601–605.PubMedGoogle Scholar
  37. Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K. and Shinozaki K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10: 1391–1406.PubMedGoogle Scholar
  38. Marino C. L., Nelson J. C., Lu Y. H., Sorrels M. E., Leroy P., Lopes C. R. and Hart G. E. 1996. RFLP-based linkage maps of the homeologous group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell. ). Genome, 39: 359–366.PubMedCrossRefGoogle Scholar
  39. Michelmore R. W., Paran I. and Kesseli R. V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci., 88: 9828–9832.PubMedCrossRefGoogle Scholar
  40. Nelson J. C., Sorrells M. E., Van Deynze A. E., Lu Y. H., Atkinson M., Bernard M., Leroy P., Faris J. D. and Anderson J. A. 1995a. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics, 141: 721–731.PubMedGoogle Scholar
  41. Nelson J. C., Van Deynze A. E., Autrique E., Sorrells M. E., Lu Y. H., Merlino M., Atkinson M. D. and Leroy P. 1995b. Molecular mapping of wheat-homoeologous group 2. Genome, 38: 516–524.PubMedCrossRefGoogle Scholar
  42. Nelson J. C., Van Deynze A. E., Autrique E., Sorrells M. E., Lu Y. H., Negre S., Bernard M. and Leroy P. 1995c. Molecular mapping of wheat-homoeologous group 3. Genome, 38: 525–533.PubMedCrossRefGoogle Scholar
  43. Nguyen H. T., Babu R. C. and Blum A. 1997. Breeding for drought resistance in rice: physiology and molecular genetics consideration. Crop Sci., 37: 1426–1434.CrossRefGoogle Scholar
  44. Ribaut J. M. and Hoisington D. 1998. Marker-assisted selection: new tools and strategies. Trends in Pl. Sci., 3: 236–239.CrossRefGoogle Scholar
  45. Ribaut J. M., Edmeades C. O., Perotti E. and Hoisington D. 2001. QTL analyses, MAS results, and perspectives for drought-tolerance improvement in tropical maize. In: Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited Environments, (eds. ) Ribaut J. M. and Pol and D., A Strategic Planning Workshop held at CIMMYT, El Batan, Mexico, 21-25 June (1999) Mexico D. F. : CIMMYT, pp. 131–136.Google Scholar
  46. Ribaut J. M., Hu X. Y., Hoisington D. and Gonzalez-de-Leon D. 1997a. Use of STSs and SSRs as rapid and reliable preselection tools in a marker-assisted selection-backcross scheme. Pl. Mol. Biology Reporter, 15: 154–162.CrossRefGoogle Scholar
  47. Ribaut J. M., Jiang C., González-de-León D., Edmeades G. O. and Hoisington D. A. 1997b. Identification of quantitative trait loci under drought conditions in tropical maize. 1. Yield components and marker-assisted selection strategies. Theor. Appl. Genet., 94: 887–896.CrossRefGoogle Scholar
  48. Röder M. S., Korzun V., Wendehake K., Plaschke J., Tixier M. H., Leroy P. and Ganal M. W. 1998. A microsatellite map of wheat. Genetics, 149: 1–17.Google Scholar
  49. Schachermayr G. M., Messmer M. M., Feuillet C., Winzeler H., Winzeler M. and Keller B. 1995. Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat. Theor. Appl. Genet., 90: 982–990.CrossRefGoogle Scholar
  50. Schachermayr G. M., Siedler H., Gale M. D., Winzeler H., Winzeler M. and Keller B. 1994. Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theor. Appl. Genet., 88: 110–115.CrossRefGoogle Scholar
  51. Schena M., Shalon D., Davis R. W. and Brown P. O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270: 467–470.PubMedCrossRefGoogle Scholar
  52. Shalon D. 1995. “DNA microarrays: A new tool for genetic analysis. ” Ph. D thesis, Stanford University, Stanford, CA.Google Scholar
  53. Shalon D., Smith S. J. and Brown P. O. 1996. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Methods, 6: 639–645.Google Scholar
  54. Shinozaki K. and Yamaguchi-Shinozaki K. 1996. Molecular responses to drought and cold stress. Current Opinions in Biotech., 7: 161–167.CrossRefGoogle Scholar
  55. Skriver K. and Mundy J. 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell, 2: 503–512.PubMedGoogle Scholar
  56. Sun G. L., Fahima T., Korol A. B., Turpeinen T., Grama A., Ronin Y. I. and Nevo E. 1997. Identification of molecular markers linked to the yrI5 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet., 95: 622–628.CrossRefGoogle Scholar
  57. Tarczynski M. and Bohnert H. 1993. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science, 259: 508–510.PubMedCrossRefGoogle Scholar
  58. Van Deynze A. E., Dubcovsky J., Gill K. S., Nelson J. C., Sorrells M. E., Dvorák J., Gill B. S., Lagudah E. S., McCouch S. R. and Appels R. 1995. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome, 38: 45–59.PubMedCrossRefGoogle Scholar
  59. Van Ginkel M. and Rajaram S. 1993. Breeding for durable disease resistance in wheat: an international perspective. In: Durability of Disease Resistance. (eds. ) Jacobs T. H. and Parlevliet J. E., Kluwer Academic Press. Dordrecht, the Netherlands, pp. 259–272.CrossRefGoogle Scholar
  60. William H. M., Hoisington D., Singh R. P. and González-de-León D. 1997. Detection of quantitative trait loci associated with leaf rust resistance in bread wheat. Genome, 40: 253–260.PubMedCrossRefGoogle Scholar
  61. Williams K. J., Fisher J. M. and Langridge P. 1996. Development of a PCR-based allele-specific assay from an RFLP probe linked to resistance to cereal cyst nematode in wheat. Genome, 39: 798–801.PubMedCrossRefGoogle Scholar
  62. Xie D. X., Devos K. M., Moore G. and Gale M. D. 1993. RFLP-based genetic maps of the homoeologous group 5 chromosomes of bread wheat (Triticum aestivum L. ). Theor. Appl. Genet., 87: 70–74.CrossRefGoogle Scholar
  63. Yamaguchi-Shinozaki K. and Shinozaki K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature or high-salt stress. Plant Cell, 6: 251–264.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  1. 1.The International Maize and Wheat Improvement Center (CIMMYT)Mexico

Personalised recommendations