Skip to main content

Adaptation, Acclimation and Regulation in Algal Photosynthesis

  • Chapter
Photosynthesis in Algae

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 14))

Summary

Relating the photosynthetic processes of algae to their environments requires that the responses are considered over time-scales of seconds to minutes (regulation), hours to days (acclimation) and up to thousands of millions of years (adaptation). All of these responses are genetically determined, with so-called adaptations reflecting genetic changes which distinguish taxa from the strain (ecotype), i.e. infraspecific level, up to the Division (Phylum) level. Tempting as it is to assign the establishment of these genetic differences to natural selection, the genetic differences at the higher taxonomic levels should be related to the environments at the time at which they evolved. Genetic differences limit the responses that algal genotypes can make to their immediate environment (i.e. during a single generation). Using photosynthetic pigments as an example, the content per unit biomass of photosynthetic light-harvesting pigment-protein complexes, and, where they occur, of the energy-dissipating xanthophyll cycle pigments change with the photon flux density for growth; light-harvesting pigments decrease with increasing light, while xanthophyll cycle pigments increase. There are cost-benefit considerations not only in the extent of such acclimation, but also of the rate at which acclimation occurs. Regulation involves allosteric or covalent modification of pre-existing catalysts, e.g. ribulose bisphosphate carboxylase-oxygenase, xanthophyll cycle pigments, and the pigment-protein complexes involved in state transitions. Much remains to be done to not only understand adaptation, acclimation and regulation in algae, but also to understand how the three processes interact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JF (1993) Redox control of gene expression and the function of chloroplast genomes—an hypothesis. Photosynth Res 36: 95–102

    CAS  Google Scholar 

  • Allen JF and Raven JA (1996) Frcc-radical-induced mutations vs. redox regulation: Costs and benefits of genes in organelles. J Mol Evol 42: 482–492

    PubMed  CAS  Google Scholar 

  • Anning T, Maclntyre HL, Pratt S, Sammes PJ, Gibb S and Gcider RJ (2000) Photoacclimation in the marine diatom Skeletonema costatum. Limnol Oceanogr 45: 1807–1817

    Google Scholar 

  • Axelsson L, Larssen C and Ryberg H (1999) Affinity, capacity and oxygen sensitivity of two different mechanisms for bicarbonate utilization in Ulva lactuca L. (Chlorophyta). Plant Cell Environ 22: 969–978

    CAS  Google Scholar 

  • Badger MR, Andrews T.I, Whitney SM, Ludwig M, Yellowlees DC, Leggat W and Price GD (1998) The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplastbased CC2-concentrating mechanisms in algae. Can J Bot 76: 1052–1071

    CAS  Google Scholar 

  • Badger MR, Hanson D and Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29: 161–173

    CAS  Google Scholar 

  • Beardall J (1991) Effects of photon flux density on the CO2concentrating mechanism of the cyanobacterium Anabaena variabilis. J Plankton Res 13 (suppl): 133-146

    Google Scholar 

  • Bibby TS, Nield J and Barber J (2001a) Iron deficiency induces the formation of an antenna ring around trimeric Photosystem I in cyanobacteria. Nature 412: 743–745

    PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J, Partensky F and Barber J (2001b) Oxyphotobacteria-antenna ring around Photosystem I. Nature 413: 590.

    Google Scholar 

  • Bjerrum CJ and Canfield DE (2002) Ocean productivity before about 1.6 Gyr ago limited by phosphorus absorption on to iron oxides. Nature 417: 159–162.

    PubMed  CAS  Google Scholar 

  • Björkman O (1981) Responses to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB and Ziegler H (eds) Physiological Plant Ecology. Encyclopedia of Plant Physiology, NS, Vol 12A, pp 57-107. Springer, Berlin

    Google Scholar 

  • Boekema EJ, Hifney A, Yakushewska AE, Piotrowski M, Keegstra W, Berry S, Michel KP, Pistorius EK and Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745–748

    PubMed  CAS  Google Scholar 

  • Bricaud A and Morel A (1986) Light attenuation and scattering by phytoplankton cells: A theoretical modelling. Applied Optics 25: 571–578

    PubMed  CAS  Google Scholar 

  • Bouman HA, Platt T, Kraay GW, Sathycndranath S and Irwin BD (2000) Bio-optical properties of the subtropical North Atlantic. I. Vertical variability. Mar Ecol Progr Ser 200: 3–18

    CAS  Google Scholar 

  • Bricaud A, Allali K, Morel R, Marie D, Veldhuis MJW, Partensky F and Vaulot D (1999) Divinyl chlorophyll a-specific absorption coefficients and absorption efficiency factors for Prochlorococcus marinus: Kinetics of photoacclimation. Mar Ecol Progr Ser 188: 21–32

    CAS  Google Scholar 

  • Bunt JS (1965) Measurement of photosynthesis and respiration in a marine diatom with mass spectrometer and with C14. Nature 207: 1373–1375

    CAS  Google Scholar 

  • Campbell L, Nolla HA and Vaulot D 1994 The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol Oceanogr 39: 954–961

    Google Scholar 

  • Canfield DE and Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382: 127–132

    PubMed  CAS  Google Scholar 

  • Chadd HE, Newman J, Mann NH and Carr NG (1996) Identification of iron Superoxide dismutase and copper/zinc Superoxide dismutase enzyme activity within the marine cyanobacterium Synechococcus sp. WH 8803. FEMS Microbiol Lett 131: 161–165

    Google Scholar 

  • Cockell CS (2000) The ultraviolet history of the terrestrial planets—implications for biological evolution. Planetary Space Sci 48: 203–214

    CAS  Google Scholar 

  • Coté B and Platt T (1983) Day-to-day variations in the springsummer photosynthetic parameters of coastal marine phytoplankton. Limnol Oceanogr 28: 320–344

    Google Scholar 

  • Crossett RN, Drew EA and Larkum AWD (1965) Chromatic adaptation in benthic marine algae. Nature 207: 547–548

    Google Scholar 

  • Cullen J and Lewis MR (1988) The kinetics of algal photoadaptation in the context of vertical mixing. J Plankton Res 10: 1039–1063

    Google Scholar 

  • Davey MS and Geider RJ (2001) Impact of iron limitation on the photosynthetic apparatus of the diatom Chaetoceros muelleri (Bacillariophyceae). J Phycol 37: 987–1000

    CAS  Google Scholar 

  • Demmig-Adams B and Adams WW III (1992) Photoprotective and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43: 549–626

    Google Scholar 

  • Dring MJ (1981) Chromatic adaptation of photosynthesis in marine benthic algae: An examination of its significance using a theoretical model. Limnol Oceanogr 26: 271–284

    Google Scholar 

  • Dring MJ (1982) The Biology of Marine Plants. Edward Arnold, London

    Google Scholar 

  • Dubinsky Z, Falkowski PG and Wyman K (1986) Light harvesting and utilization in phytoplankton. Plant Cell Physiol 27: 1335–1349

    CAS  Google Scholar 

  • Engelmann TW (1983) Farbe und Assimilation. Botanisches Zeitung 41: 1–29

    Google Scholar 

  • Erdner DL and Anderson DM (1999) Ferredoxin and flavodoxin as biochemical indicators of iron limitation during open-ocean iron enrichment. Limnol Oceanogr 44: 1609–1615

    CAS  Google Scholar 

  • Erdner DL, Price NM, Doucette GJ, Peleato ML and Anderson DH (1999) Characterization of ferredoxin and flavodoxin as markers of Fe limitation in marine phytoplankton. Mar Ecol Progr Ser 184: 43–53

    CAS  Google Scholar 

  • Escoboulos J-M, Loma M, LaRoche J and Falkowski PG (1995) Light regulation of cab gene transcription is signalled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92: 10237–10249

    Google Scholar 

  • Falkowski PG and Raven JA (1997) Aquatic Photosynthesis. Blackwell Science, Maiden

    Google Scholar 

  • Falkowski PG and Dubinsky Z (1980) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289: 172–174

    Google Scholar 

  • Falkowski PG, Dubinsky Z and Wyman K (1985) Growthirradiance relationships in phytoplankton. Limnol Occanogr 30: 311–321

    CAS  Google Scholar 

  • Finazzi G, Furia A, Barbagallo RP and Forti G (1999) State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta 1413: 117–129

    PubMed  CAS  Google Scholar 

  • Flameling IA and Kromkamp J (1997) Photoacclimation of Scenedesmus prohiberons (Chlorophyceae) to fluctuating PPFD simulating vertical mixing. J Plankton Res 19: 1011–1024

    Google Scholar 

  • Flynn KJ, Fasham MJR and Hipkin CR (1997) Modeling the interactions between ammonium and nitrate uptake in marine phytoplankton. Phil Trans Roy Soc London 352: 1625–1645

    CAS  Google Scholar 

  • Flynn KJ and Hipkin CR (1999) Interactions between iron, light, ammonium and nitrate; insights from the construction of a dynamic model of algal physiology. J Phycol 35: 1171–1190

    CAS  Google Scholar 

  • Flynn KJ, Marchall H and Geider RJ (2001) A comparison of two N-irradiance models of phytoplankton growth. Limnol Oceanogr 46: 1794–1802.

    Google Scholar 

  • Fork DC, Herbert SK and Malkin S (1991) Light energy distribution in the brown alga Macrocystis pyrifera (giant kelp). Plant Physiol 95: 731–739

    PubMed  CAS  Google Scholar 

  • Forster B, Osmond CB and Boynton JE (2001) Very high light resistant mutants of Chlamydomonas reinhardtii: Responses of Photosystem II, non-photochemical quenching and xanthophyll pigments to light and CO2. Photosynth Res 67: 5–15

    PubMed  CAS  Google Scholar 

  • Franklin LA and Badger MR (2001) A comparison of photosynthetic electron transport rates in macroalgae measured by pulse amplitude modulated chlorophyll fluorometry and mass spectrometry. J Phycol 37: 756–767

    CAS  Google Scholar 

  • Franklin LA and Forster RM (1997) The changing irradiance environment: Consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol 32: 207–232

    Google Scholar 

  • Franklin LA and Larkum AWD (1997) Multiple strategies for a high light existence in a tropical marine macroalga. Photosynth Res 53: 149–159

    CAS  Google Scholar 

  • Franklin LA, Seaton GGR, Lovelock CE and Larkum AWD (1996) Photoinhibition of photosynthesis on a coral reef. Plant Cell Environm 19: 825–836

    Google Scholar 

  • Geider RJ (1987) Light and temperature dependence of the carbon to chlorophyll ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton. New Phytol 106: 1–34

    CAS  Google Scholar 

  • Geider RJ and La Roche J (1994) The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Plant Cell Environm 39: 275–301

    CAS  Google Scholar 

  • Geider RJ and La Roche J (2002) Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol 37: 1–17

    Google Scholar 

  • Geider RJ, Mclntyre HL and Kana TM (1996) A dynamic model of photoadaptation in phytoplankton. Limnol Oceanogr 41: 1–15

    CAS  Google Scholar 

  • Geider RJ, Maclntyre HL and Kana TM (1998) A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol Oceanogr 43: 679–684

    CAS  Google Scholar 

  • Gilstad M, Johnsen G and Sakshaug E (1993) Photosynthetic parameters, pigment composition and respiration rates of the marine diatom Skeletonema costatum grown in continuous light and a 12: 12 h light-dark cycle. J Plankton Res 15: 939–951

    Google Scholar 

  • Goericke R, Olson RJ and Shalapyonok A (2000) A novel niche for Prochlorococcus sp. in low-light suboxic environments in the Arabian sea and the eastern tropical North Pacific. Deep-Sea Res 147: 1183–1205.

    Google Scholar 

  • Goericke R and Repeta D (1993) Chlorophylls a and b and divinyl chlorophylls a and b in the open subtropical North Atlantic Ocean. Mar Ecol Prog Ser 101: 307–313.

    CAS  Google Scholar 

  • Goericke R and Welschmeyer NA (1993) Prochlorophyte picoplankton contribute significantly to biomass and productivity in the Sargasso Sea. Deep-Sea Res I 40: 2283–2294.

    Google Scholar 

  • Goss R, Bohme K and Wilhelm C (1998) The xanthophyll cycle of Mantoniella squamata converts violoxanthin into antheraxanthin but not to zeaxanthin: Consequences for the mechanism of enhanced non-photochemical energy dissipation. Planta 205: 613–621

    CAS  Google Scholar 

  • Graziano LM, Geider RJ, Li WKW and Olaizola M (1996) Nitrogen limitation of North Atlantic phytoplankton: Analysis ofphysiological condition in nutrient enrichment experiments. Aqu Microbial Ecol 11: 53–64

    Google Scholar 

  • Harvey WH (1836) Algae. In: Mackay JT (ed) Flora Hibernica Part 3, pp 157-257. Curry and Company, Dublin

    Google Scholar 

  • Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J and Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: Insights through comparative genomics. Photosynth Res 70: 53–71

    PubMed  CAS  Google Scholar 

  • Hope AB (2000) Electron transfers amongst cytochrome f, plastocyanin and Photosystem I: kinetics and mechanisms. Biochim Biophys Acta 1456: 5–26

    PubMed  CAS  Google Scholar 

  • Kain JM (1989) The seasons in the subtidal. Br Phycol J 24: 203–215

    Google Scholar 

  • Kana TM (1992) Relationship between photosynthetic oxygen cycling and carbon assimilation in Synechococcus WH 7803 (Cyanophyta). J Phycol 28: 304–308

    CAS  Google Scholar 

  • Kana TM, Geider RJ and Critchley C (1997) Dynamic balance theory of pigment regulation in microalgae by multiple environmental factors. New Phytol 137: 629–638

    CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H., Tanaka A., Asamizu E, Nakamura Y, Miyajama N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M and Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding genes. DNA Res 3: 109–136

    PubMed  CAS  Google Scholar 

  • Kiefer DA and Mitchell BG (1983) A simple, steady-state description of phytoplankton growth based on the absorption cross-section and quantum efficiency. Limnol Oceanogr 28: 770–776

    Google Scholar 

  • Kirk JTO (1994) Light and Photosynthesis in Aquatic Ecosystems, Second Edition. Cambridge University Press, Cambridge

    Google Scholar 

  • Kromkamp J and Limbeck M (1993) Effect of short-term variation in irradiance on light harvesting and photosynthesis of the marine diatom Skeletonema costatum: A laboratory study simulating vertical mixing. J Gen Microbiol 139: 2277–2284

    Google Scholar 

  • Kubier JE and Raven JA (1995) The interactions between inorganic carbon supply and light supply in Palmaria palmata. J Phycol 31: 369–375

    Google Scholar 

  • Kyewalyanga MN, Platt T, Sathyendranath S, Lutz VA and Stuart V (1998) Seasonal variations in physiological parameters of plankton in the North Atlantic. J Plankton Res 20: 17–42

    Google Scholar 

  • Larkum T and Howe CJ (1997) Molecular aspects of lightharvesting processes in algae. Adv Bot Res 27: 257–330

    CAS  Google Scholar 

  • Larkum AWD, Drew EA and Crossctt RN (1967) The vertical distribution of attached marine algae in Malta. J Ecol 55: 361–371

    Google Scholar 

  • La Roche J, Murray H, Orellana M and Newton J (1995) Flavodoxin expression as an indicator of iron limitation in marine diatoms. J Phycol 31: 520–530

    Google Scholar 

  • La Roche J, Boyd PW, McKay RML and Geider RJ (1996) Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature 382: 802–805

    Google Scholar 

  • Laskar J, Joutel F and Robutel P (1993) Stabilization of the Earth’s obliquity by the moon. Nature 361: 615–617

    Google Scholar 

  • Laws EA and Bannister TT (1980) Nutrient-and light-limitation of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol Oceanogr 25: 457–473.

    CAS  Google Scholar 

  • Li LA, Zianni MR and Tabita FR (1999) Inactivation of the monocistronic rca gene in Anabaena variabilis suggest a physiological ribulose bisphosphate carboxylase oxygenase activasc-like function in hetcrocystous cyanobacteria. Plant Mol Biol 40: 467–478

    PubMed  CAS  Google Scholar 

  • Littler MM and Littler DS (1994) Algenwachstum in ozeanischen Tiefer. Unsere Zeit (24 Jahr. 1944) Nr 6: 330–335

    Google Scholar 

  • Littler MM, Littler DS, Blair S and Norris N (1985) Deepest known plant life discovered on an uncharted seamounl. Science 227: 57–59

    PubMed  CAS  Google Scholar 

  • Lohr M and Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violoxanthin cycle. Proc Natl Acad Sci USA 96: 8784–8798

    PubMed  CAS  Google Scholar 

  • Lomas MW and Gilbert PM (1999) Temperature regulation of nitrate uptake: A novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol Oceanogr 44: 556–572

    CAS  Google Scholar 

  • Long SP Humphries S and Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45: 633–662

    CAS  Google Scholar 

  • Liming K (1993) Environmental and internal control of seasonal growth in seaweeds. Hydrobiologia 260/261: 1-4

    Google Scholar 

  • Maclntyre HL, Kana TM and Geider RJ (2000) The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. Trends Plant Sci 5: 12–17

    Google Scholar 

  • Maclntyre HL, Kara TM, Anning T and Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38: 17–38

    Google Scholar 

  • McKay RM, La Roche J, Yakumin AF, Durnford DG and Geider RJ (1999) Accumulation of ferredoxin and flavodoxin in a marine diatom in response to Fe. J Phycol 35: 510–519

    CAS  Google Scholar 

  • Maxwell DP, Laudenbach DE and Huner NPA (1995) Redox regulation of light-harvesting complex II and cab messenger-RNA abundance in Dunaliella salina. Plant Physiol 109: 787–795

    PubMed  CAS  Google Scholar 

  • Mazel D and Marliere P (1989) Adaptive eradication of methione and cysteine from cyanobacterial light-harvesting proteins. Nature 341: 245–248

    PubMed  CAS  Google Scholar 

  • Mitchell BG and Kiefer DA (1988) Variability in pigment specific paniculate fluorescence and absorption in the northeastern Pacific Ocean. Deep-Sea Res 35: 665–689

    CAS  Google Scholar 

  • Moison TA and Mitchell BG (1999) Photophysiological acclimation of Phaeocystis antarctica Karsten under light limitation. Limnol Oceanogr 44: 247–258

    Google Scholar 

  • Moore LR and Chisholm SW (1999) Photophysiology of the marine cyanobacterium Prochlorococcus: Ecotypic differences among cultured strains. Limnol Oceanogr 44: 628–638

    Google Scholar 

  • Neilsen MV and Sakshaug E (1993) Photophysiological studies of Skeletonema costatum adapted to spectrally different light regimes. Limnol Oceanogr 38: 1576–1581

    Google Scholar 

  • Omata T, Price GD, Badger MR, Okamura M, Gohta S and Ogawa T (1999) Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Proc Natl Acad Sci USA 96: 13571–13576

    PubMed  CAS  Google Scholar 

  • Osmond CB and Grace SC (1995) Perspectives on photoinhibition and photorespiration in the field-quintessential inefficiencies of the light and dark reactions of photosynthesis. J Exp Bot 46: 1351–1362

    CAS  Google Scholar 

  • Pfannschmidt T, Nilsson A and Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397: 625–628

    CAS  Google Scholar 

  • Platt T, Subba-Rao DV, Smith JC, Li WKW, Iravin B, Home EPW and Sameoto DD (1983) Photosynthetically competent phytoplankton from the aphotic zone of the deep ocean. Mar Ecol Progr Ser 10: 105–110

    CAS  Google Scholar 

  • Platt T, Harrison WG, Irwin B, Home EP and Gallegoes CL (1982) Photosynthesis and photoadaptation of marine phytoplankton in the Arctic. Deep-Sea Res 29: 1159–1170

    CAS  Google Scholar 

  • Ploug H, Stolte W and J0rgensen BB (1999a) Diffusive boundary layers of the colony-forming plankton alga Phaeocystis sp.— implication for nutrient uptake and cellular growth. Limnol Oceanogr 44: 1959–1967

    CAS  Google Scholar 

  • Ploug H, Stolte W, Epping EHG and J0rgensen BB (1999b) Diffusive boundary layers, photosynthesis and respiration of the colony-forming plankton alga, Phaeocystis sp. Limnol Oceanogr 44: 1949–1958

    Google Scholar 

  • Poole LJ and Raven JA (1997) The biology of Enteromorpha. Adv Bot Res 12: 1–148

    CAS  Google Scholar 

  • Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34: 319–328

    Google Scholar 

  • Raven JA (1984a) Energetics and Transport in Aquatic Plants. AR Liss, New York

    Google Scholar 

  • Raven JA (1984b) A cost-benefit analysis of photon absorption by photosynthetic unicells. New Phytol 98: 593–625

    CAS  Google Scholar 

  • Raven JA (1986) Physiological consequences of extremely small size for autotrophic organisms in the sea. In: Platt T and Li WKW (eds) Photosynthetic Picoplankton, pp 1-70. Can Bull Fisheries Aquat Sci 24

    Google Scholar 

  • Raven JA (1990) Sensing pH? Plant Cell Environm 13: 721–729

    Google Scholar 

  • Raven JA (1991) Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature. Plant Cell Environm 14: 779–794

    CAS  Google Scholar 

  • Raven JA (1993) The evolution of vascular land plants in relation to quantitative functioning of dead water-conducting cells and stomata. Biol Rev 68: 337–363

    Google Scholar 

  • Raven JA (1996) The bigger the fewer: Size, taxonomic diversity and the range of pigments in marine phototrophs. J Mar Biol Assoc UK 76: 211–217

    Google Scholar 

  • Raven JA (1997) Inorganic carbon acquisition by marine autotrophs. Adv Bot Res 27: 85–209

    CAS  Google Scholar 

  • Raven JA (1998) Small is beautiful. The picophytoplankton. Funct Ecol 12: 503–513

    Google Scholar 

  • Raven JA (1999) Picophytoplankton. Progr Phycol Res 13: 33–106

    Google Scholar 

  • Raven JA (2000) Land plant biochemistry. Phil Trans Roy Soc London B 355: 833–846

    PubMed  CAS  Google Scholar 

  • Raven JA and Geider RJ (1988) Temperature and algal growth. New Phytol 110: 441–461

    CAS  Google Scholar 

  • Raven JA and Kubier JE (2002) New light on the scaling of metabolic rate with the size of algae. J Phycol 38: 11–16.

    Google Scholar 

  • Raven JA, Johnston AM and Surif M bin (1989) The photosynthetic apparatus as a phyletic character. In: Green JC, Leadbeater BSC and Diver WI (eds) Problems andPerspectivcs. The Chromophytc Algae, pp 63-84. Clarendon Press, Oxford

    Google Scholar 

  • Raven JA, Johnston AM, Kübier J and Parsons R (1994) The influence of natural and experimental high O2 concentrations on O2-evolving photolithotrophs. Biol Rev 69: 61–94

    Google Scholar 

  • Raven JA, Kübier JE, Johnston AM, Poole LJ, Taylor R and Meinroy SG (1998) Oxygen-insensitive growth of algae with and without CO2-concentrating mechanisms: In: Garab G (cd) Photosynthesis: Mechanisms and Effects, Vol V, pp 3331-3337. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Raven JA, Evans MCW and Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60: 111–149

    CAS  Google Scholar 

  • Raven JA, Kübier JE and Beardall J (2000) Put out the light, and then put out the light. J Mar Biol Assoc UK 80: 1–25

    CAS  Google Scholar 

  • Richardson KR, Beardall J and Raven JA (1983) Adaptation of unicellular algae to irradiance: An analysis of strategies. New Phytol 361: 249–251

    Google Scholar 

  • Rowan KS (1989) Photosynthetic Pigments in Algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Salih A, Larkum A, Cox G, Kuhl M and Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408: 850–853.

    PubMed  CAS  Google Scholar 

  • Shuter B (1979) A model of physiological adaptation in unicellular algae. J Theoret Biol 78: 519–552

    CAS  Google Scholar 

  • Subramaniam A, Carpenter EJ, Karentz D and Falkowski PG (1999) Bio-optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. I. Absorption and photosynthetic action spectra. Limnol Oceanogr 44: 608–617

    CAS  Google Scholar 

  • Sukenik A, Bennett J and Falkowski PG (1987) Light-saturated photosynthesis—limitation by electron transport or carbonfixation? Biochim Biophys Acta 891: 205–215

    CAS  Google Scholar 

  • Ting CS, Rocalp G, King J and Chisholm SW (2002) Cyanobacterial photosynthesis in the oceans: The origins and significance of divergent light-harvesting strategies. Trends Microbiol 10: 134–142

    PubMed  CAS  Google Scholar 

  • Ursi S, Pedersén M, Piastino E and Snoeijs P (2003) Intraspecific variation of photosynthesis, respiration and photoprotective carotenoids in Gracilaria birdae Gracilariales (Rhodophyta). Mar Biol 142: 997–1007

    CAS  Google Scholar 

  • van den Hoek C, Mann DG and Jahns HM (1995) Algae. An Introduction to Phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Walker JGC, Klein C, Schidlowski M, Schopf JW, Stevenson DJ and Walker MR (1983) Environmental evolution of the Archean-early Proterozoic Earth. In: Schopf JW (ed) Earth’s Earliest Biosphere, pp 260-290. Princeton University Press, Princeton

    Google Scholar 

  • White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, Haft DH, Gwinn ML, Nelson WC, Richardson DL, Moffat KS, Qin H, Jiang L, Pamphile W, Crosby M, Shen M, Vamathalen JJ, Lam P, McDonald L, Utterbeck T, Zalewski C, Makarova KS, Aravind L, Daly MJ, Minton KW, Fleischmann RD, Ketchum KA, Nelson KE, Salzberg S, Smith HO, Venter JC and Fraser CM (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286: 1571–1577

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Raven, J.A., Geider, R.J. (2003). Adaptation, Acclimation and Regulation in Algal Photosynthesis. In: Larkum, A.W.D., Douglas, S.E., Raven, J.A. (eds) Photosynthesis in Algae. Advances in Photosynthesis and Respiration, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1038-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1038-2_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3772-3

  • Online ISBN: 978-94-007-1038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics