Skip to main content

Red, Cryptomonad and Glaucocystophyte Algal Phycobiliproteins

  • Chapter
Photosynthesis in Algae

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 14))

Summary

A significant amount of research has been done on phycobiliproteins over the past ten years. A much fuller description of the cryptomonad bilins has expanded the number of known chromophores in phycobiliproteins. A number of new phycobiliproteins have been identified from red algal strains. Comparative genomics has become possible with the sequencing of the vast majority of phycobiliprotein and linker polypeptides in Cyanobacteria and in red, glaucocystophyte and cryptomonad algae. Structural studies have elucidated most of the major phycobiliprotein subunits and now some of the linker polypeptides to more fully understand the energy transfer within phycobiliproteins. While the majority of the research still focuses on cyanobacterial systems, red and cryptomonad algal phycobiliproteins enjoyed a renewed emphasis during this decade. The glaucocystophytes have also been studied, as much for their significance for plastid evolution as for their phycobiliprotein structure and function, which is very much like that in Cyanobacteria. Most of the research on these eukaryotic organisms focused on crystal structure and gene comparisons to cyanobacterial systems, with a liberal amount of new methodology for phycobiliprotein isolation from red algal strains thrown in. The focus has mostly been on comparison of the red and cryptomonad algal systems to what has been demonstrated in cyanobacterial systems when it comes to structure/function relationships. The lack of useful genetic systems in red and cryptomonad algae is a current major inhibitor of direct structure/function studies in the red and cryptomonad algal systems; allowing cyanobacterial research to take the lead so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajlani G and Vernotte C (1998) Deletion of the PB-loop in the L-CM subunit does not affect phycobilisome assembly or energy transfer functi ons in the cyanobacterium Synechocystis sp. PCC6714. Eur J Biochem 257: 154–159

    PubMed  CAS  Google Scholar 

  • Akhilender NK, Sarada RM, Khan MY, Mahadeva SM, Viswanatha S, Narasimha MK, Ravishankar GA and Srinivas L (1999) Toxicity assessment of phycocyanin—A blue colorant from blue green alga Spirulina platensis. Food Biotech (New York) 13: 51–66

    Google Scholar 

  • Algarra P, De La Vina G and Nell F (1991) Effects of light quality and irradiance level on short term pigment response of the red alga Corallina elongata. Marine Ecol Progr Ser 74: 27–32

    Google Scholar 

  • Anderson LK and Toole CM (1998) A model for early events in the assembly pathway of cyanobacterial phycobilisomes. Molec Microbiol 30: 467–474

    CAS  Google Scholar 

  • Apt K and Grossman A (1993) The phycobilisome beta (18) subunit gene of allophycocyanin is located on the plastid genome in Aglaothamnion neglectum (Rhodophyta) and cotranscribed with an unidentified open reading frame. Photosynth Res 35: 235–245

    CAS  Google Scholar 

  • Apt K, Hoffman N and Grossman A (1993) The y subunit of Rphycoerythrin and its possible mode of transport into the plastid of red algae. J Biol Chem 268: 16208–16215

    PubMed  CAS  Google Scholar 

  • Apt K, Collier J and Grossman A (1995) Evolution of the phycobiliproteins. J Mol Biol 248: 79–96

    PubMed  CAS  Google Scholar 

  • Arciero D, Bryant D and Glazer A (1988) In vitro attachment of bilins to apophycocyanin: I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin. J Biol Chem 263: 18343–18349

    PubMed  CAS  Google Scholar 

  • Beale S and Cornejo J (1984) Enzymatic transformation of biliverdin to phycocyanobilin by extracts of the unicellular red alga, Cyanidium caldarium. Plant Physiol 76: 7–15

    PubMed  CAS  Google Scholar 

  • Bernard C, Thomas J, Mazel D, Mousseau A, Castets A, Demarsac N and Dubacq J (1992) Characterization of the genes encoding phycoerythrin in the red alga Rhodellaviolacea —Evidence for a splitting of the rpeB-gene by an intron. Proc Natl Acad Sci USA 89: 9564–9568

    PubMed  CAS  Google Scholar 

  • Bernard C, Etienne A-L and Thomas J-C (1996) Synthesis and binding of phycoerythrin and its associated linkers to the phycobilisome in Rhodella violacea (Rhodophyta): Compared effects of high light and translation inhibitors. J Phycology 32: 265–271

    CAS  Google Scholar 

  • Betz M, Ruegsegger U, Esteban A, Sidler W and Zuber H (1993) Reconstitution of the core complex (αβ)3APCLC8.9 of the phycobilisome from Mastigocladus laminosus using the LC8.9 linker polypeptide overexpressed in Escherichia coli. Biol Chem Hoppe Seyler 374: 435–443

    PubMed  CAS  Google Scholar 

  • Bhattacharya D, Helmchen T, Bibeau C and Melkonian M (1995) Comparisons of nuclear-encoded small-subunit ribosomal RNAs reveal the evolutionary position of the Glaucocystophyta. Mol Biol Evol 12: 415–420

    PubMed  CAS  Google Scholar 

  • Brejc K, Ficner R, Huber R and Steinbacher S (1995) Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 angstrom resolution. J Mol Biol 249: 424–440

    PubMed  CAS  Google Scholar 

  • Bryant D (1991) Cyanobacterial phycobilisomes: Progress towards a complete structural and functional analysis via molecular genetics. In: Bogorad L and Vasil IK (eds) The Molecular Biology of Plastids and Mitochondria, pp. 257-300. Academic Press, New York

    Google Scholar 

  • Bryant D, Glazer A and Eiserling F (1976) Characterization and structural properties of the major biliproteins of Anabaena sp. Arch Microbiol 110: 60–75

    Google Scholar 

  • Bryant D, Guglielmi G, Tandeau de Marsac N, Castets A and Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: A model. Arch Microbiol 123: 113–127

    CAS  Google Scholar 

  • Bryant D, De Lorimier R, Lambert D, Dubbs J, Stirewalt V, Stevens SJ, Porter R, Tam J and Jay E (1985) Molecular cloning and nucleotide sequence of the a and β subunits of allophycocyanin from the cyanelle genome of Cyanophora paradoxa. Proc Natl Acad Sci USA 82: 3242–3246

    PubMed  CAS  Google Scholar 

  • Capuano V, Braux A, Tandeau de Marsac N and Houmard J (1991) The anchor polypeptide of cyanobacterial phycobilisomes. J Biol Chem 266: 7239–7247

    PubMed  CAS  Google Scholar 

  • Carmona R, Vergara J, Perez-Llorens P, Figueroa F and Niell F (1996) Photosynthetc acclimation and biochemical responses of Gelidium sesquipedale cultured in chemostats under different qualities of light. Mar Biol 127: 25–34

    CAS  Google Scholar 

  • Chang W, Jiang T, Wan Z, Zhang J, Yang Z and Liang D (1996) Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 Ã… resolution. J Mol Biol 262: 721–731

    PubMed  CAS  Google Scholar 

  • Chow T-J, Hwang I-S and Huang T-C (1989) Comparison of pigments and photosynthate of Nostoc strains cultured photoautotrophically and chemoheterotrophically. Bot Bull Acad Sinica 30: 147–153

    CAS  Google Scholar 

  • Clay BL, Krugens P and Lee RE (1999) A revised classification of Cryptophyta. Bot J Linnean Soc 131: 131–151

    Google Scholar 

  • Coelho L, Prince J and Nolen TG (1998) Processing of defensive pigment in Aplysia californica: Acquisition, modification and mobilization of the red algal pigment R-phycoerythrin by the digestive gland. J Exp Biol 201: 425–438

    PubMed  CAS  Google Scholar 

  • Cornejo J and Beale S (1988) Algal heme oxygenase from Cyanidium caldarium: Partial purification and fractionation into three required protein components. J Biol Chem 263, 11915-11921.

    Google Scholar 

  • Cornejo J and Beale S (1997) Phycobilin biosynthetic reactions in extracts of cyanobacteria. Photosynth Res 51: 223–230

    CAS  Google Scholar 

  • Corver WE, van der Aa J, Cornelisse CJ, Fleuren GJ, Koopman LA and Regensburg M (2000) Four-color multiparameter DNA flow cytometric method to study phenotypic intratumor heterogeneity in cervical cancer. Cytometry 39: 96–107

    PubMed  CAS  Google Scholar 

  • Csatorday K, MacColl R, Guard-Friar D and Hanzlik C (1987) Excitation energy transfer between sensitizing chromophores of phycocyanin 612. Photochem Photobiol 45: 285–291

    Google Scholar 

  • Cubicciotti R (1997) Phycobilisomes, derivatives, and uses thereof. US Patent No. 5,695,990 (USA, Cubicciotti)

    Google Scholar 

  • Cunninghan F, Denneberg R, Jursinic P and Gantt E (1990) Growth under red light enhances PS II relative to PS I and phycobilisomes in the red alga Porphyridium cruentum. Plant Physiol 93: 888–895

    Google Scholar 

  • Deurring M, Huber R, Bode W, Rumbeli R and Zuber H (1990) Refined three-dimensional structure of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus at 2.7 Ã…. J Mol Biol 211: 633–644.

    Google Scholar 

  • Dibbayawan T, Vesk M and Larkum AWD (1990) Cord-like phycobilisomes of Rhodosorus marinus Geitler: Fine structure and its functional implications. Curr Res Photosyn 11: 333–336

    Google Scholar 

  • Dodge J (1969) The ultrastructure of Chroomonas mesostigmatica Butcher (Cryptophyceae). Arch Mikrobiol 69: 266–280

    Google Scholar 

  • Dolganov N and Grossman AR (1999) A polypeptide with similarity to phycocyanin alpha-subunit phycocyanobilin lyase involved in degradation of phycobilisomes. J Bacteriol 181: 610–617

    PubMed  CAS  Google Scholar 

  • Ducret A, Sidler W, Frank G and Zuber H (1994) The complete amino acid sequence of R-phycocyanin-I alpha and beta subunits from the red alga Porphyridium cruentum—Structural and phylogenetic relationships of the phycocyanins within the phycobiliprotein families. Eur J Biochem 221: 563–580

    PubMed  CAS  Google Scholar 

  • Duerring M, Schmidt G and Huber R (1991) Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 Ã… resolution. J Mol Biol 217: 577–592

    PubMed  CAS  Google Scholar 

  • Eisele LE Bakhru SH, Liu X, MacColl R and Edwards MR (2000) Studies on C-phycocyanin from Cyanidium caldarium, a eukaryote at the extremes of habitat. Biochim Biophys Acta 1456: 99–107

    PubMed  CAS  Google Scholar 

  • Enami I, Murayama H, Ohta H, Kamo M, Nakazato K and Shen J (1995) Isolation and characterization of a Photosystem II complex from the red alga Cyanidium caldarium: association of cytochrome c-550 and a 12 kDa protein with the complex. Biochim Biophys Acta 1232: 208–216

    PubMed  Google Scholar 

  • Fairchild C and Glazer AN (1994) Oligomeric structure, enzyme kinetics and substrate specificity of the phycocyanin a subunit phycocyanobilin lyase. J Biol Chem 269: 8686–8694

    PubMed  CAS  Google Scholar 

  • Federspiel N and Grossman A (1990) Characterization of the light-regulated operon encoding the phycoerythrin-associated linker proteins from the cyanobacterium Fremyella diplosiphon. JBact 172: 4072–4081

    CAS  Google Scholar 

  • Ficner R and Huber R (1993) Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23-nm resolution. Eur J Biochem 218: 103–106

    PubMed  CAS  Google Scholar 

  • Ficner R, Lobeck K, Schmidt G and Huber R (1992) Isolation, crystallization, crystal structure analysis and refinement of Bphycoerythrin from the red alga Porphyridium sordidum at 2.2 Ã… resolution. J Mol Biol 228: 935–950

    PubMed  CAS  Google Scholar 

  • Fukuda J, Kaneko T, Egashira M and Oshimi K (1998) Direct measurement of CD34+ blood stem cell absolute counts by flow cytometry. Stem Cells (Miamisburg) 16: 294–300

    CAS  Google Scholar 

  • Gantt E (1969) Properties and ultrastructure of phycoerythrin from Porphyridium cruentum. Plant Physiol 44: 1629–1638

    PubMed  CAS  Google Scholar 

  • Gantt E (1980) Structure and function of phycobilisomes: Light harvesting pigment complexes in red and blue-green algae. Int Rev Cytol 66: 45–80

    CAS  Google Scholar 

  • Gantt E (1981) Phycobilisomes. Annu Rev Plant Physiol 32: 327–347

    CAS  Google Scholar 

  • Gantt, E (1988) Phycobilisomes: Assessment of the core structure and thylakoid interaction. In: Stevens SJ and Bryant D (eds) Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models, pp 91-101. The American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Gantt E and Lipschultz C (1972) Phycobilisomes of Porphyridium cruentum. I. Isolation. J Cell Biology 54: 313–324

    CAS  Google Scholar 

  • Gantt E and Lipschultz C (1974) Phycobilisomes of Porphyridium cruentum: Pigment analysis. Biochemistry 13: 2960–2966

    PubMed  CAS  Google Scholar 

  • Gantt E and Lipschultz C (1980) Structure and phycobiliprotein composition of phycobilisomes from Griffithsia pacifica (Rhodophyceae). J Phycol 16: 394–398

    CAS  Google Scholar 

  • Gantt E, Edwards M and Provasoli L (1971) Chloroplast structure of the Cryptophyceae. Evidence for phycobiliproteins within intrathylakoid spaces. J Cell Biol 48: 280–290

    PubMed  CAS  Google Scholar 

  • Gantt E, Lipschultz CA, Grabowski J and Zimmerman BK (1979) Phycobilisomes from blue-green and red algae. Isolation criteria and dissociation characteristics. Plant Physiol 63: 615–620

    PubMed  CAS  Google Scholar 

  • Gindt YM, Zhou J, Bryant DA and Sauer K (1992) Core mutations of Synechococcus sp. PCC 7002 phycobilisomes: A spectroscopic study. J Photochem Photobiol B 15: 75–89

    PubMed  CAS  Google Scholar 

  • Gingrich J, Davis D and Nguyen Q (2000) Multiplex detection and quantitation of proteins on western blots using fluorescent probes. BioTechniques 29: 636–642

    PubMed  CAS  Google Scholar 

  • Gingrich JC, Lundell DJ and Glazer AN (1983) Core substructure in cyanobacterial phycobilisomes. J Cell Biochem 22: 1–14

    PubMed  CAS  Google Scholar 

  • Glazer AN (1982) Phycobilisomes: Structure and dynamics. Annu Rev Microbiol 36: 173–198

    PubMed  CAS  Google Scholar 

  • Glazer AN (1984) Phycobilisome. A macromolecular complex specialized for light energy transfer. Biochim Biophys Acta 768: 29–51

    CAS  Google Scholar 

  • Glazer AN (1999) Phycobiliproteins. In: Cohen Z (ed) Chemicals from Microalgae, pp 261-280. Taylor and Francis, Ltd., London and Philadelphia

    Google Scholar 

  • Glazer AN and Bryant D (1975) Allophycocyanin B (lambda max 671, 618nm): A new cyanobacterial phycobiliprotein. Arch Microbiol 104: 15–22

    PubMed  CAS  Google Scholar 

  • Glazer AN and Fang S (1973) Formation of hybrid proteins from the a and b subunits of phycocyanins of unicellular and filamentous blue-green algae. J Biol Chem 248: 663–671

    PubMed  CAS  Google Scholar 

  • Glazer AN and Hixson C (1977) Subunit structure and chromophore composition of rhodophytan phycoerythrins: Porphyridium cruentum B-phycoerythrin and b-phycoerythrin. J Biol Chem 252: 32–42

    PubMed  CAS  Google Scholar 

  • Glazer AN and Stryer L (1983) Fluorescent tandem phycobiliprotein conjugates. Emission wavelength shifting by energy transfer. Biophys J 43: 383–386

    PubMed  CAS  Google Scholar 

  • Glazer AN and Wedemayer G (1995) Cryptomonad biliproteins— an evolutionary perspective. Photosynth Res 46: 93–105

    CAS  Google Scholar 

  • Glazer AN, Chan CF and West JA (1997) An unusual phycocyanobilin-containing phycoerythrin of several bluishcolored, acrochaetoid, freshwater red algal species. J Phycol 33: 617–624

    CAS  Google Scholar 

  • Goff L and Coleman A (1988) The use of plastid DNA restriction endonuclease patterns in delineating red algal species and populations. J Phycol 24: 357–368

    Google Scholar 

  • Gray M (1989) The evolutionary origins of organelles. Trends Genet 5: 294–299

    PubMed  CAS  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG and Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57: 725–749

    PubMed  CAS  Google Scholar 

  • Guard-Friar D, Hanzlik C and MacColl R (1989) Phycoeyrthin 566—a fluorescent study. Biochim Biophys Acta 973: 118–123

    CAS  Google Scholar 

  • Guglielmi G, Cohen-Bazire G and Bryant D (1981) The structure of Gleobacter violeceus and its phycobilisomes. Arch Microbiol 129: 181–189

    CAS  Google Scholar 

  • Hanzlik C, Hancock L, Knox R, Guard-Friar D and MacColl R (1985) Picosecond fluorescence spectroscopy of the biliprotein phycocyanin 612. Direct evidence for fast energy transfer. J Lumin 34: 99–106

    CAS  Google Scholar 

  • Hill R and Rowan K (1989) The biliproteins of the Cryptophyceae. Phycologia 28: 415–463

    Google Scholar 

  • Hiller R and Martin C (1987) Multiple forms of type I phycoerythrin from a Chroomonas sp. (Cryptophyceae) varying in subunit composition. Biochim Biophys Acta 923: 98–102

    CAS  Google Scholar 

  • Holzwarth A, Wendler J and Wehrmeyer W (1983) Studies on chromophores coupling in isolated phycobiliproteins. I. Picosecond fluorescence kinetics of energy transfer in phycocyanin 645 from Chroomonas sp. Biochim Biophys Acta 724: 388–395

    CAS  Google Scholar 

  • Houmard J, Capuano V, Coursin T and Tandeau de Marsac N (1988) Isolation and molecular characterization of the gene encoding allophycocyanin B, a terminal energy acceptor in cyanobacterial phycobilisomes. Mol Microbiol 2: 101–107

    PubMed  CAS  Google Scholar 

  • Isono T and Katoh T (1987) Subparticles of Anabaena phycobilisomes. II. Molecular assembly of allophycocyanin cores in reference to ‘anchor’ protein. Arch Biochem Biophys 256: 317–324

    PubMed  CAS  Google Scholar 

  • Jenkins J, Hiller RG, Speirs J and Godovac-Zimmermann J (1990) A genomic clone encoding a cryptophyte phycoerythrin a-subunit: Evidence of three α-subunits and an N-terminal membrane transit sequence. FEBS Lett 273: 191–194

    PubMed  CAS  Google Scholar 

  • Kikuchi H, Wako H, Yura K, Go M and Mimuro M (2000) Significance of two-domain structure in subunits of phycobiliproteins revealed by the normal mode analysis. Biophys J 79: 1587–1600

    PubMed  CAS  Google Scholar 

  • Klotz A and Glazer A (1985) Characterization of the bilin attachment sites in R-phycoerythrin. J Biol Chem 260: 4856–4863

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Degenkolb E, Bersohn R, Rentzepis P, MacColl R and Berns DS (1979). Energy transfer among the chromophores on phycocyanins measured by picosecond kinetics. Biochemistry 18: 5073–5078.

    PubMed  CAS  Google Scholar 

  • Kugrens P, Clay BL and Lee RE (1999) A revised classification of Cryptophyta. 131: 131–151

    Google Scholar 

  • Kuhsel M, Strickland R and Palmer J (1990) An ancient group I intron shared by eubacteria and chloroplasts. Science 250: 1570–1573

    PubMed  CAS  Google Scholar 

  • Kursar T, Swift H and Alberte R (1981) Morphology of a novel cyanobacterium and characterization of light-harvesting complexes from it: Implications for phycobiliprotein evolution. Proc Nat Acad Sci USA 78: 6888–6892

    PubMed  CAS  Google Scholar 

  • Lagarias JC and Murphy JT (1998) Phytofluors as fluorescent labels. In: PCT publication W09805944. The Regents of the University of California

    Google Scholar 

  • Lange W, Wilhelm C, Wehrmeyer W and Morchel E (1990) Supramolecular structure of Photosystem II-phycobilisome complexes of Porphyridium cruentum. Bot Acta 103, 250-257

    Google Scholar 

  • Lichtle C and Thomas J (1976) Etude ultrastructuale des thylacoides des algues a phocobiliproteines, comparison des resultats obtenus par fixation classique et cryodecapage. Phycologia 15: 393–403

    Google Scholar 

  • Lissi EA, Pizarro M, Aspee A and Romay C (2000) Kinetics of phycocyanine bilin groups destruction by peroxyl radicals. Free Radical Biology and Medicine 28: 1051–1055

    PubMed  CAS  Google Scholar 

  • Liu J-Y, Jiang T, Zhang J and Liang D (1999) Crystal structure of allophycocyanin from red algae Porphyridium yezoensis at 2.2 Ã… resolution. J Biol Chem 274: 16945–16952

    PubMed  CAS  Google Scholar 

  • Livache T, Fouque B, Roget A, Marchand J, Bidan G, Teoule R and Mathis G (1998) Polypyrrole DNA chip on a silicon device: Example of hepatitis C virus genotyping. Anal Biochem 255: 188–194

    PubMed  CAS  Google Scholar 

  • Loffelhardt W, Bohnert H-J and Bryant D (1997) The cyanelles of Cyanophora paradoxa. Crit Rev Plant Sci 16: 393–413.

    CAS  Google Scholar 

  • Lopez-Figueroa F and Niell F (1990) Effects of light quality on chlorophyll and biliprotein accumulation in seaweeds. Mar Biol 104: 321–327

    CAS  Google Scholar 

  • Lundell D, Williams J and Glazer AN (1981) Molecular architecture of a light-harvesting antenna. In vitro assembly of the rod substructure of Synechococcus 6301 phycobilisomes. J Biol Chem 256: 3580–3587

    PubMed  CAS  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124: 311–334

    PubMed  CAS  Google Scholar 

  • MacColl R and Guard-Friar D (1983a) Phycocyanin 612: A biochemical and photophysical study. Biochemistry 22: 5568–5572

    CAS  Google Scholar 

  • MacColl R and Guard-Friar D (1983b) Phycocyanin 645: The chromophore assay of phycocyanin 645 from the cryptomonad protozoa Chroomonas species. J Biol Chem 258: 14327–14329

    PubMed  CAS  Google Scholar 

  • MacColl R and Guard-Friar D (1987) Phycobiliproteins. CRC Press, Inc., Boca Raton

    Google Scholar 

  • MacColl R, Bowser SS, Eisele LE, Endres RL, Malak H and Williams EC (1999a) Studies on R-phycoerythrins from two Antarctic marine red algae and a mesophilic red alga. Polar Biol 22: 384–388

    Google Scholar 

  • MacColl R, Eisele LE, Dhar M, Ecuyer J-P, Hopkins S, Marrone J, Barnard R, Malak H and Lewitus AJ (1999b) Bilin organization in cryptomonad biliproteins. Biochemistry 38: 4097–4105

    PubMed  CAS  Google Scholar 

  • Maid U, Valentin K and Zetsche K (1990) The psb A gene from a red alga resembles those from cyanobacteria and cyanelles. Curr Genet 17: 255–259

    PubMed  CAS  Google Scholar 

  • Malak H and MacColl R (1991) Picosecond fluorescence from phycocyanin 612. Photochem Photobiol 53: 367–370

    CAS  Google Scholar 

  • Marin B, Klingberg M and Melkonian M (1998) Phylogenetic relationships among the cryptophyta: Analyses of nuclearencoded SSU rRNA sequences support the monophyly of extant plastid-containing lineages. Protist 149: 265–276

    Google Scholar 

  • Mathis G (2000) Phycobiliprotein-linker peptide complex fluorescent tracer and methods of using the same US Patent 06020212, CIS Bio International [issued 2/1/2000]

    Google Scholar 

  • Moreira D, Le Guyader H and Phillippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405: 69–72

    PubMed  CAS  Google Scholar 

  • Morschel E, Koller K, Wehrmeyer W and Schneider H (1977) Biliprotein assembly in the disc-shaped phycobilisomes of Rhodeila violacea. I. Electron microscopy of phycobilisomes in situ and analysis of their architecture after isolation and negative staining. Cytobiologie 16: 118–129

    Google Scholar 

  • Morseman J, Moss M, Zoha S and Allnutt F (1999) PBXL-1: A new fluorochrome applied to detection of proteins on membranes. BioTechn 26: 559–563

    CAS  Google Scholar 

  • Morseman J, Zeng X, Rogers Y-H and Allnutt F (2000) Direct fluorescent detection of biotinylated oligonucleotides on glass slides using streptavidin labeled with PBXL-1 orphycoerythrin. Luminescence Forum 6: 4–14

    Google Scholar 

  • Muller N, Hauler O and Schenk H (1997) The phycobiliproteins within the cyanoplast of Cyanophora paradoxa store carbon, nitrogen, and sulfur for the whole cell. In: Schenck H, Herrmann R, Jeon K, Muller N and Schwemmler W (eds) Eukaryotism and Symbiosis, pp 252-260. Springer-Verlag, Berlin

    Google Scholar 

  • Mullineaux CW and Ashby MK (1999) The role of ApcD and ApcF in energy transfer from phycobilisomes to PS I and PS II in a cyanobacterium. Photosynth Res 61: 169–179

    Google Scholar 

  • Neuschaefer-Rube O, Blueggel M, Ernst A, Meyer HE and Westermann M (2000) The blue-colored linker polypeptide L55 is a fusion protein of phycobiliproteins in the cyanobacterium Synechocystis sp. strain BO 8402. Eur J Biochem 267: 3623–3632

    PubMed  CAS  Google Scholar 

  • Nickol A, MullerN, Bausenwein U, Bayer M, Meier T and Schenk H (2000) Cyanophora paradoxa: Nucleotide sequence and phylogeny of the nucleus encoded muroplast fructose-1,6bisphosphate aldolase. Z Naturforsch C 55, 991-1003.

    Google Scholar 

  • Ong L and Glazer A (1987) R-Phycocyanin II, a new phycocyanin occurring in marine Synechococcus species. J Biol Chem 262: 6323–6331

    PubMed  CAS  Google Scholar 

  • Ong LJ and Glazer AN (1991) Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins. J Biol Chem 266: 9515–9527. Park Y-W, Cummings RT, Wu L, Zheng S, Cameron PM

    PubMed  CAS  Google Scholar 

  • Woods A, Zaller DM, Marcy AI and Hermes JD (1999) Homogeneous proximity tyrosine kinase assays: Scintillation proximity assay versus homogeneous time-resolved fluorescence. Anal Biochem 269: 94–104

    PubMed  Google Scholar 

  • Pastore A and Lesk A (1990) Comparison of the structures of globins and phycocyanins: Evidence for evolutionary relationship. Proteins: Structure, Function and Genetics 8: 133–155

    CAS  Google Scholar 

  • Plank T, Toole C and Anderson LK (1995) Subunit interactions and protein stability in the cyanobacterial light-harvesting proteins. J Bacteriol 177: 6798–6803

    PubMed  CAS  Google Scholar 

  • Prince J, Nolen TG and Coelho L (1998) Defensive ink pigment processing and secretion in Aplysia californica: Concentration and storage of phycoerythrobilin in the ink gland. J Exper Biol 201: 1595–1613

    CAS  Google Scholar 

  • Redlinger T and Gantt E (1981) Phycobilisome structure of Porphyridium cruentum. Polypeptide composition. Plant Physiol 68: 1375–1376

    PubMed  CAS  Google Scholar 

  • Redlinger T and Gantt E (1982) A M 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids. Possible function of linkage of phycobilisomes to thylakoids and in energy transfer. Proc Nat Acad Sci USA 79: 5542–5546

    PubMed  CAS  Google Scholar 

  • Reith M and Douglas S (1990) Localization of B-phycoerythrin to the thylakoid lumen of Cryptomonas Φ does not involve a signal peptide. Plant Mol Biol 15: 585–592

    PubMed  CAS  Google Scholar 

  • Reuter W, Wiegand G, Huber R and Than M (1999) Structural analysis at 2.2 Ã… of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.LC7.8, from the phycobilisomes of Mastigocladus laminosus. Proc Nat Acad Sci USA 96: 1363–1368

    PubMed  CAS  Google Scholar 

  • Rhie G and Beale S (1994) Regulation of heme oxygenase activity in Cyanidium caldarium by light, glucose, and phycobilin precusors. J Biol Chem 269: 9620–9626

    PubMed  CAS  Google Scholar 

  • Richard C and Zabulon G (1997) The heme oxygenase gene (pbsA) in the red alga Rhodella violacea is discontinuous and transcriptionally activated during iron limitation. Proc Nat Acad Sci USA 94: 11736–11741

    Google Scholar 

  • Rimbau V, Camins A, Gonzalez R, Pallas M and Romay C (1999) Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus. Neurosci Lett 276: 75–78

    PubMed  CAS  Google Scholar 

  • Ritter S, Hiller R, Wrench PM, Weite W and Diederichs K (1999) Crystal structure of a phycourobilin containing phycoerythrin at 1.90-Ã… resolution. J Struct Biol 126: 86–98

    PubMed  CAS  Google Scholar 

  • Roederer M, Kantor AB, Parks DR and Herzenberg LA (1996) CyandPE and Cy7APC: Bright new probes for immunofluorescence. Cytometry 24: 191–197

    PubMed  CAS  Google Scholar 

  • Roell M and Morse D(1991) Fractionation of nuclear, chloroplast and mitochondria DNA from Polysiphonia boldii (Rhodophyta) using a rapid and simple method for the simultaneous isolation of RNA and DNA. J Phycol 27: 299–305

    CAS  Google Scholar 

  • Rowan K (1989) Photosynthetic Pigments of Algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Sagert S and Schubert H (1995) Acclimation of the photosynthetic apparatus of Palmaria palmata (Rhodophyta) to light qualities that preferentially excite photosystem I or PS II. J Phycology 31: 547–554

    CAS  Google Scholar 

  • Sauer J, Gorl M and Forehammer K (1999) Nitrogen starvation in Synechococcus PCC 7942: Involvement of glutamine synthetase and NtcA in phycobiliprotein degradation and survival. Arch Microbiol 172: 247–255

    PubMed  CAS  Google Scholar 

  • Schenk H, Hanf J and Neu-Muller M (1983) The phycobiliproteins in Cyanophora paradoxa as accessory pigments and nitrogen storage proteins. Z Naturforsch 38c: 972-977

    Google Scholar 

  • Schirmer T, Huber R, Schneider M and Bode W (1985) Crystal structure analysis and refinement at 2.5 Ã… of hexameric Cphycocyanin from the cyanobacterium Agmenellum quadruplicatum. J Mol Biol 188: 651–676

    Google Scholar 

  • Schirmer T, Huber R, Schneider M, Bode W, Miller M and Hackert M (1986) Crystal structure and refinement at 2.5 A of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. J Mol Biol 188: 651–676

    PubMed  CAS  Google Scholar 

  • Schmid I, Cole SW, Giorgi JV and Zack JA (2000) Measurement of lymphocyte subset proliferation by three-color immunofluorescence and DNA flow cytometry. J Immunol Meth 235: 121–131

    CAS  Google Scholar 

  • Schrodeder B (1997) Phycobiliproteins: Biosynthesis and applications, Ph.D. thesis. University of California, Berkeley

    Google Scholar 

  • Sgorbati S, Barbesti S, Baroni MD, Citterio S, Labra M and Neri MG (2000) Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria. Cytometry 40: 214–218

    PubMed  Google Scholar 

  • Shibata M, Kashino Y, Satoh K and Koike H (2001) Isolation and characterization of oxygen-evolving thylakoid membranes and photosystem II particles from a glaucocystophyte, Cyanophora paradoxa. Plant Cell Physiol 42: 733–741

    PubMed  CAS  Google Scholar 

  • Shivji M (1991) Organization of the chloroplast genome in the red alga Porphyra yezoensis. Curr Genet 19: 49–54

    CAS  Google Scholar 

  • Sidler W, Suter F, Morisset W, Wehrmeyer W and Zuber H (1985) Structural studies on Cryptomonad biliprotein subunits. Biol Chem Hoppe Seyler 366: 233–244

    PubMed  CAS  Google Scholar 

  • Siiman O, Burshteyn A, Raynor R, Roth P and Smith C (1999) Antibody-aminodextran-phycobiliprotein conjugates. Official Gazette of the United States Patent and Trademark Office Patents, 1221

    Google Scholar 

  • Stadnichuk I, Idintsova T and Strongin A (1984) Molecular organization and pigment composition of R-phycoerythrin from the red alga Callithamnion rubosum. Mol Biol (Mosk) 18: 343–349

    CAS  Google Scholar 

  • Stadnichuk I, Karapetyan N, Kislov L, Semenenko V and Veryasov M (1997) Two y polypeptides of B-phycoerythrin from Porphyridium cruentum. J Photochem Photobiol B 39: 19–23

    CAS  Google Scholar 

  • Stirewalt V, Michalowski C, Loffelhardt W, Bohnert H-J and Bryant DA (1995) Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol Biol Reporter 13: 327–332

    CAS  Google Scholar 

  • Stryer L and Glazer AN (1985) Phycobiliprotein fluorescent conjugates. In: USPTO. The Board of Trustees of the Leland Stanford University [US Patent #4,542,104, issued9/17/1985]

    Google Scholar 

  • Stryer L, Glazer AN and Oi VT (1985) Fluorescent immunoassay employing a phycobiliprotein labeled ligand or receptor. In US Patent and Trademark Office (USA, The Board of Trustees of the Leland Stanford University) [US Patent # 4,520,110 issued 5/28/1985]

    Google Scholar 

  • Stryer, L., Glazer, AN and Oi, VT (1989). Fluorescent conjugates for analysis of molecules and cells. In US Patent Office (USA, The Board of Trustees of the Leland Stanford Jr. University) [US Patent # 4,859,582 issued 8/22/1989]

    Google Scholar 

  • Su X, Fraenke, P and Bogorad L (1992) Excitation energy transfer from phycocyanin to chlorophyll in an ape A deficient mutant of Synechocystis sp. PCC 6803. J Biol Chem 267, 22944-22950.

    Google Scholar 

  • Suter, F., Fuglistaller, P., Lundell, D., Glazer, A. N., and Zuber, H. (1987). Amino acid sequences of alpha-allophycocyanin B from Synechococcus 6301 and Mastigocladus laminosus. FEBS Lett 217: 279–282

    CAS  Google Scholar 

  • Swanson RV, Ong L.J, Wilbanks SM and Glazer AN (1991) Phycoerythrins of marine unicellular cyanobacteria. II. Characterization of phycobiliproteins with unusually high phycourobilin content. J Biol Chem 266: 9528–9534

    PubMed  CAS  Google Scholar 

  • Swanson R, Zhou J, Leary J, Williams T, de Lorimier R, Bryant DA and Glazer AN (1992) Characterization of phycocyanin produced by cpcE and cpcF mutants and identification of an intergenic suppressor of the defect in bilin attachment. J Biol Chem 267: 16146–16154.

    PubMed  CAS  Google Scholar 

  • Tapia G, Galetovic A, Lemp E, Pino E and Lissi E (1999) Singlet oxygen-mediated photobleaching of the prosthetic group in hemoglobins and C-phycocyanin. Photochem Photobiol 70: 499–504

    PubMed  CAS  Google Scholar 

  • Telford WG, Moss MW, Morseman JP and Allnutt FCT (2001) Cryptomonad algal phycobiliproteins as fluorochromes for extracellular and intracellular antigen detection by flow cytometry. Cytometry 44: 16–23.

    PubMed  CAS  Google Scholar 

  • Thomas J-C and Passaquet C (1999) Characterization of a phycoerythrin without alpha-subunits from a unicellular red alga. J Biolo Chem 274: 2472–2482

    CAS  Google Scholar 

  • Toole CM, Plank TL, Grossman AR and Anderson LK (1998) Bilin deletions and subunit stability in cyanobacterial lightharvesting proteins. Molec Microbiol 30: 475–486

    CAS  Google Scholar 

  • Torres M, Niell F and Fgueroa F (1995) Photosynthetic metabolism and cell-wall polysaccharide accumulation in Gelidium sesquipedale (Clem.) Born, et Thur. under different light qualities. J Appl Phycol 7: 167–174

    CAS  Google Scholar 

  • Tsekos I, Reiss H-D, Orfanidis S and Orologas N (1996) Ultrastructure and supramolecular organization of photosynthetic membranes of some marine red algae. New Phytol 133: 543–551

    Google Scholar 

  • Waaland J, Waaland S and Bates G (1974) Chloroplast structure and pigment composition in the red algal Griffithsia pacifica: Regulation by light intensity. J Phycology 10: 193–199

    Google Scholar 

  • Waggoner AS, Ernst LA, Chen C-H and Rechtenwald D. J (1993) PE-Cy5: A new fluorescent antibody label for three-color flow cytometry with a single laser. Ann New York Acad Sci 677: 185–193

    CAS  Google Scholar 

  • Wastl J, Fraunholz M, Zauner S, Douglas S and Maier U-G (1999) Ancient gene duplication and differential gene flow in plastid lineages: The GroEL-Cpn60 example. J Molec Evol 48: 112–117

    PubMed  CAS  Google Scholar 

  • Waterbury J, Watson S, Glazer AN and Ong L (1989) Phycoerythrins useful in fluorescent conjugates. In USPTO [US Patent # 4,857,474]

    Google Scholar 

  • Wedemayer G, Wemmer D and Glazer AN (1991) Phycobilins of cryptophycean algae. Structures of novel bilins with acryloyl substituents from phycoerythrin 566. J Biol Chem 266: 4731–4741

    PubMed  CAS  Google Scholar 

  • Wedemayer G, Kidd D, Wemmer D and Glazer AN (1992) Phycobilins of cyrpotphycean algae. Occurrence of dihydrobiliverdin and mesobiliverdin in cryptomonad biliproteins. J Biol Chem 267: 7315–7331

    PubMed  CAS  Google Scholar 

  • Wedemayer G, Kidd D and Glazer AN (1996) Cryptomonad biliproteins: Bilin types and locations. Photosynth Res 48: 163–170

    CAS  Google Scholar 

  • Wilk K, Harrop S, Jankova L, Edler D, Keenan G, Sharpies F, Hiller R and Curmi P (1999) Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: Crystal structure of a cryptophyte phycoerythrin at 1.63-Ã… resolution. Proc Natl Acad Sci, USA 96: 8901–8906

    PubMed  CAS  Google Scholar 

  • Wolfe G, Cunningham FX, Durnford D, Green BR and Gantt E (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367: 566–568

    CAS  Google Scholar 

  • Xu M, Kathe S, Goodrich-Blair H, Nierzwicki-Bauer M, Strickland R and Palmer J (1990) Bacterial origin of a chloroplast intron: Conserved self-splicing group I introns in cyanobacteria. Science 250: 1566–1569

    PubMed  CAS  Google Scholar 

  • Zhang J-H, Chen T, Nguyen SH and Oldenburg KR (2000) A high-throughput homogeneous assay for reverse transcriptase using generic reagents and time-resolved fluorescence detection. Anal Biochem 281: 182–186

    PubMed  CAS  Google Scholar 

  • Zhang Y, Chen X, Liu J, Pang S, Shi D, Zeng C and Zhou B (1999) A new model of phycobilisome in Spirulina platensis. Science in China Series C Life Sciences 41: 74–79

    Google Scholar 

  • Zhou J, Gasparich G, Stirewalt V, de Lorimer R and Bryant D (1992) The cpcE and cpcF genes of Synechococcus sp. PCC7002: Construction and phenotypic characterization of interposon mutants. J Biol Chem 267: 16138–16145

    PubMed  CAS  Google Scholar 

  • Zilinskas BA (1982) Isolation and characterization of the central component of the phycobilisome core of Nostoc sp. Plant Physiol 70: 1060–1065

    PubMed  CAS  Google Scholar 

  • Zoha S, Ramnarain S and Allnutt F (1998a) Ultrasensitive direct fluorescence immmunoassay for thyroid stimulating hormone. Clin Chem 44: 2045–2046

    PubMed  CAS  Google Scholar 

  • Zoha S, Ramnarain S, Morseman J, Moss M, Allnutt F, Roger Y-H and Harvey B (1999) PBXL fluorescent dyes for ultrasensitive direct detection. J Fluores 9: 197–208

    CAS  Google Scholar 

  • Zoha SJ, Ramnarain S and Allnutt F (1998b) High sensitivity fluorescent immunoassay for thyroid stimulating hormone (TSH) using PBXLâ„¢ dyes. Luminescence Forum 4: 10–14

    Google Scholar 

  • Zuber H, Brunisholz R and Sidler W (1987) Structure and function of light-harvesting pigment complexes. In: Amesz, J (ed) Photosynthesis, pp 233-271. Elsevier Biomédical, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen Mary Toole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Toole, C.M., Allnutt, F.C.T. (2003). Red, Cryptomonad and Glaucocystophyte Algal Phycobiliproteins. In: Larkum, A.W.D., Douglas, S.E., Raven, J.A. (eds) Photosynthesis in Algae. Advances in Photosynthesis and Respiration, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1038-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1038-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3772-3

  • Online ISBN: 978-94-007-1038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics